Xy -- no binders at all!

\y -> Xy -- no \|x binder

(\x ->\y ->y) X -- x is outside the scope of the \x binder;
-- intuition: it's not "the same" x

"Malke"

(x> z

UIZ
Q o2

In the expression (\x ->(x) (x)is x bound or free?

=
A.bound V\
lst  2nd

B. free

C. first occurrence is bound, second is free



D. first occurrence is bound, second and third are free

E. first two occurrences are bound, third is free

Free Variables

An variable x is freein e if there exists a free occurrence of x in e

We can formally define the set of all free variables in a term like so:



FV(x) =277 §2%
FV(\x -> e) = 222 FV(e) —&x%
FV(el e2) =222 FV(&) v F(&)

\></>x

( Y .
Closed Expressions

If e has no free variables it is said to be closed

¢ Closed expressions are also called combinators



What is the shortest closed expression?

Rewrite Rules of Lambda Calculus

1. a-step (aka renaming formals)
2)3-step (aka function call)



Semantics: 3-Reduction

(KxV-> e1l) e2 | =b> el[x := e2]

where el[x := e2] means “ el with all free occurrences of x replaced with e2”

Computation by search-and-replace:

« If you see an abstraction applied to an argument, take the body of the abstraction and replace all free

occurrences of the formal by that argument

e Wesay that, (\x -> el) e2|B-stepsto|el[x := e2]



Examples

(\x -> x) apple
=b> apple

Is this right? Ask Elsa (http://goto.ucsd.edu:8095/index.html#?demo=blank.lc)!



(£ > Boov) ARG
(\f ->£f (\x -> x))) (give apple)

=b> ???

Bovy (£ =44
QUIZ
\x —> pobY kG
=b> 777
A. apple

B. \y -> apple



C. \x -> apple

D.\y ->y

E.\x ->y

QUIZ

oY

(\x >X(\X -> X) %plek
-b> 777

aﬂo)e, (\x> x)
/



A. 'gpple (\x -> x)

B. apple (\apple -> apple)
C. apple (\x -> apple)

D. apple

E. \x -> X

A Tricky One



(w5
(\x -> (\X -> X))y

=b> \y ->y
Vimp = y
Is this right?

Something is Fishy

(\x -> (\y ->x)) vy
=b> \y ->y

Is this right?



Problem: the free y in the argument has been captured by \y !
—_— e

Solution: make sure that all free variables of the argument are different from the binders in the body.

—
Cscavars  DIFF THIN pasams

Capture-Avoiding Substitution

We have to fix our definition of 3-reduction:

(\x ->el) e2 =b> el[x := e2]

where el[x := e2] means ‘et -with-all free-ocecurrenees-of x replaced-with-e2 2

o el with all free occurrences of x replaced with e2, as long as no free variables of e2 get captured



¢ undefined otherwise

Formally:
x[x := e] =e
y[x := e] =y -- assuming x /=y
(el e2)[x := e] = (el[x := e]) (e2[x := e])
(\x ->el)[x :=e] =\x ->el -- why do we leave ‘el1’ alone?
(\y -> el)[x := e]
| not (y in FV(e)) = \y -> el[x := e]
| otherise = undefined -- wait, but what do we do then???



Rewrite Rules of Lambda Calculus

1. a-step (aka renaming formals)
2. 3-step (aka function call)

A X — & )
=00y O\Ej% €[><::ﬂ}>

)\0\.%5\, %‘2@{&9&6‘&
Nb=>b

Semantics: Q-Renaming

\Xx ->e =a> \y -> e[x :=vy]
where not (y in FV(e))



e We can rename a formal parameter and replace all its occurrences in the body

e Wesaythat \x -> e a-stepsto \y -> e[x := y]

Example:
\x ->x  =a> \y ->y =a> \z -> z

All these expressions are ¢-equivalent

What’s wrong with these?

-- (A
\f -> f x =a> \x->xx,
-- (B)

(\x -=>\y >y)y =a> ((\x ->\z ->2)z

-- (O

\x ->\y ->xy =a> \apple -> \orange -> apple orange



The Tricky One

(\x -> (\y ->x)) vy

=a> 727

To avoid getting confused, you can always rename formals, so that different variables have different names!



Normal Forms

Aredexis a A-term of the form
(\x -> el1) e2

A A-term is in normal form if it contains no redexes.



QUIZ

Which of the following term:are not in normal form ?

am Shll be red_u_m&

‘Z% 00 Lambolz !

C.(\x ->x)y
|

D.x (\y ->y) NoT a redex [bema)\ 156w
KLEHT )

E.CandD



Semantics: Evaluation

A l-term e evaluatesto e' if

1. There is a sequence of steps
e =2>e.1=2> ... =2>¢eN=2>c¢'
where each =?> iseither =a> or =b> and N >= 0

2. e' isinnormal form



Examples of Evaluation

(\x -> x) apple /
=b> apple

{(PobY Qﬂfﬁ
(\f ->|f (\x -> ))s g\ -> X))
s 222 — VX"L

(\x -> x x) (\x -> x)

=?> 772

Elsa shortcuts

Named A-terms:



