
 x y -- no binders at all!

 \y -> x y -- no \x binder

 (\x -> \y -> y) x -- x is outside the scope of the \x binder;

 -- intuition: it's not "the same" x

QUIZ

In the expression (\x -> x) x , is x bound or free?

A. bound

B. free

C. �rst occurrence is bound, second is free

make

Xx x

IT orneeinmy
1st 2nd

D. �rst occurrence is bound, second and third are free

E. �rst two occurrences are bound, third is free

Free Variables

An variable x is free in e if there exists a free occurrence of x in e

We can formally de�ne the set of all free variables in a term like so:

FV(x) = ???

FV(\x -> e) = ???

FV(e1 e2) = ???

Closed Expressions

If e has no free variables it is said to be closed

Closed expressions are also called combinators

a
Free Ea
EVA UFuced

x a t dog
w

e ez

Ix x

What is the shortest closed expression?

Rewrite Rules of Lambda Calculus

1. α-step (aka renaming formals)

2. β-step (aka function call)

O
e e ez es equal

Semantics: β-Reduction

 (\x -> e1) e2 =b> e1[x := e2]

where e1[x := e2] means “ e1 with all free occurrences of x replaced with e2 ”

Computation by search-and-replace:

If you see an abstraction applied to an argument, take the body of the abstraction and replace all free

occurrences of the formal by that argument

We say that (\x -> e1) e2 β-steps to e1[x := e2]

OD

D D

Examples

(\x -> x) apple

=b> apple

Is this right? Ask Elsa (http://goto.ucsd.edu:8095/index.html#?demo=blank.lc)!

(\f -> f (\x -> x)) (give apple)

=b> ???

QUIZ

(\x -> (\y -> y)) apple

=b> ???

A. apple

B. \y -> apple

Cf qBoD
AR9

BODY f ARG

i

C. \x -> apple

D. \y -> y

E. \x -> y

QUIZ

(\x -> x (\x -> x)) apple

=b> ???EtrTt
appleCtx x

A. apple (\x -> x)

B. apple (\apple -> apple)

C. apple (\x -> apple)

D. apple

E. \x -> x

A Tricky One

(\x -> (\y -> x)) y

=b> \y -> y

Is this right?

Something is Fishy

(\x -> (\y -> x)) y

=b> \y -> y

Is this right?

Hmp x

limp y

Problem: the free y in the argument has been captured by \y !

Solution: make sure that all free variables of the argument are di�erent from the binders in the body.

Capture-Avoiding Substitution

We have to �x our de�nition of β-reduction:

 (\x -> e1) e2 =b> e1[x := e2]

where e1[x := e2] means “ e1 with all free occurrences of x replaced with e2 ”

e1 with all free occurrences of x replaced with e2 , as long as no free variables of e2 get captured

t

Ng

t

free vars DIFFTHAN params

unde�ned otherwise

Formally:

x[x := e] = e

y[x := e] = y -- assuming x /= y

(e1 e2)[x := e] = (e1[x := e]) (e2[x := e])

(\x -> e1)[x := e] = \x -> e1 -- why do we leave `e1` alone?

(\y -> e1)[x := e]

 | not (y in FV(e)) = \y -> e1[x := e]

 | otherise = undefined -- wait, but what do we do then???

Rewrite Rules of Lambda Calculus

1. α-step (aka renaming formals)

2. β-step (aka function call)

Semantics: α-Renaming

 \x -> e =a> \y -> e[x := y]

 where not (y in FV(e))

Xx se

Easily seExi yD
ay Azebra zebra

We can rename a formal parameter and replace all its occurrences in the body

We say that \x -> e α-steps to \y -> e[x := y]

Example:

\x -> x =a> \y -> y =a> \z -> z

All these expressions are α-equivalent

What’s wrong with these?

-- (A)

\f -> f x =a> \x -> x x

-- (B)

(\x -> \y -> y) y =a> (\x -> \z -> z) z

-- (C)

\x -> \y -> x y =a> \apple -> \orange -> apple orange

The Tricky One

(\x -> (\y -> x)) y

=a> ???

To avoid getting confused, you can always rename formals, so that di�erent variables have di�erent names!

Normal Forms

A redex is a λ-term of the form

(\x -> e1) e2

A λ-term is in normal form if it contains no redexes.

QUIZ

Which of the following term are not in normal form ?

A. x

B. x y

C. (\x -> x) y

D. x (\y -> y)

E. C and D

s
canstillbereduced

7 noLambda

NOTa redox beeauxison
RIGHT

Semantics: Evaluation

A λ-term e evaluates to e' if

1. There is a sequence of steps

e =?> e_1 =?> ... =?> e_N =?> e'

where each =?> is either =a> or =b> and N >= 0

2. e' is in normal form

Examples of Evaluation

(\x -> x) apple

 =b> apple

(\f -> f (\x -> x)) (\x -> x)

 =?> ???

(\x -> x x) (\x -> x)

 =?> ???

Elsa shortcuts

Named λ-terms:

1B

