Xy -- no binders at all!

\y -> Xy -- no \|x binder

(\x ->\y ->y) X -- x is outside the scope of the \x binder;
-- intuition: it's not "the same" x

"Malke"

(x> z

UIZ
Q o2

In the expression (\x ->(x) (x)is x bound or free?

=
A.bound V\
lst  2nd

B. free

C. first occurrence is bound, second is free



D. first occurrence is bound, second and third are free

E. first two occurrences are bound, third is free

Free Variables

An variable x is freein e if there exists a free occurrence of x in e

We can formally define the set of all free variables in a term like so:



FV(x) =277 §2%
FV(\x -> e) = 222 FV(e) —&x%
FV(el e2) =222 FV(&) v F(&)

\></>x

( Y .
Closed Expressions

If e has no free variables it is said to be closed

¢ Closed expressions are also called combinators



What is the shortest closed expression?

Rewrite Rules of Lambda Calculus

1. a-step (aka renaming formals)
2)3-step (aka function call)



Semantics: 3-Reduction

(KxV-> e1l) e2 | =b> el[x := e2]

where el[x := e2] means “ el with all free occurrences of x replaced with e2”

Computation by search-and-replace:

« If you see an abstraction applied to an argument, take the body of the abstraction and replace all free

occurrences of the formal by that argument

e Wesay that, (\x -> el) e2|B-stepsto|el[x := e2]



Examples

(\x -> x) apple
=b> apple

Is this right? Ask Elsa (http://goto.ucsd.edu:8095/index.html#?demo=blank.lc)!



(£ > Boov) ARG
(\f ->£f (\x -> x))) (give apple)

=b> ???

Bovy (£ =44
QUIZ
\x —> pobY kG
=b> 777
A. apple

B. \y -> apple



C. \x -> apple

D.\y ->y

E.\x ->y

QUIZ

oY

(\x >X(\X -> X) %plek
-b> 777

aﬂo)e, (\x> x)
/



A. 'gpple (\x -> x)

B. apple (\apple -> apple)
C. apple (\x -> apple)

D. apple

E. \x -> X

A Tricky One



(w5
(\x -> (\X -> X))y

=b> \y ->y
Vimp = y
Is this right?

Something is Fishy

(\x -> (\y ->x)) vy
=b> \y ->y

Is this right?



Problem: the free y in the argument has been captured by \y !
—_— e

Solution: make sure that all free variables of the argument are different from the binders in the body.

—
Cscavars  DIFF THIN pasams

Capture-Avoiding Substitution

We have to fix our definition of 3-reduction:

(\x ->el) e2 =b> el[x := e2]

where el[x := e2] means ‘et -with-all free-ocecurrenees-of x replaced-with-e2 2

o el with all free occurrences of x replaced with e2, as long as no free variables of e2 get captured



¢ undefined otherwise

Formally:
x[x := e] =e
y[x := e] =y -- assuming x /=y
(el e2)[x := e] = (el[x := e]) (e2[x := e])
(\x ->el)[x :=e] =\x ->el -- why do we leave ‘el1’ alone?
(\y -> el)[x := e]
| not (y in FV(e)) = \y -> el[x := e]
| otherise = undefined -- wait, but what do we do then???



Rewrite Rules of Lambda Calculus

1. a-step (aka renaming formals)
2. 3-step (aka function call)

A X — & )
=00y O\Ej% €[><::ﬂ}>

)\0\.%5\, %‘2@{&9&6‘&
Nb=>b

Semantics: Q-Renaming

\Xx ->e =a> \y -> e[x :=vy]
where not (y in FV(e))



e We can rename a formal parameter and replace all its occurrences in the body

e Wesaythat \x -> e a-stepsto \y -> e[x := y]

Example:
\x ->x  =a> \y ->y =a> \z -> z

All these expressions are ¢-equivalent

What’s wrong with these?

-- (A
\f -> f x =a> \x->xx,
-- (B)

(\x -=>\y >y)y =a> ((\x ->\z ->2)z

-- (O

\x ->\y ->xy =a> \apple -> \orange -> apple orange



The Tricky One

(\x -> (\y ->x)) vy

=a> 727

To avoid getting confused, you can always rename formals, so that different variables have different names!



Normal Forms

Aredexis a A-term of the form
(\x -> el1) e2

A A-term is in normal form if it contains no redexes.



QUIZ

Which of the following term:are not in normal form ?

am Shll be red_u_m&

‘Z% 00 Lambolz !

C.(\x ->x)y
|

D.x (\y ->y) NoT a redex [bema)\ 156w
KLEHT )

E.CandD



Semantics: Evaluation

A l-term e evaluatesto e' if

1. There is a sequence of steps
e =2>e.1=2> ... =2>¢eN=2>c¢'
where each =?> iseither =a> or =b> and N >= 0

2. e' isinnormal form



Examples of Evaluation

(\x -> x) apple l///’
=b> apple

Povy avg
(\Ff ->|f (\x -> x)) (\x -> x)
s [:" XS@X%_LS

=7> 222

(\x -> x x) (\x -> x) Nab— a (ca-b)

=7> 772

Elsa shortcuts

Named A-terms:



let ID = \x -> x ~-- abbreviation for \x -> x

To substitute name with its definition, use a =d> step:

ID apple
=d> (\x -> x x) apple -- expand definition
=b> apple -- beta-reduce
Evaluation:

e el =*> e2: el reducesto e2 in 0 or more steps
o where each step is =a>, =b>, or =d>

e el =~> e2: el evaluatesto e2

What is the difference?



Non-Terminating Evaluation

(\x -> x x) (\x -> x x)
=b> (\x -> x x) (\x -> x x)

Oops, we can write programs that loop back to themselves...
and never reduce to a normal form!

This combinator is called 2

What if we pass 2 as an argument to another function?



let OMEGA = (\x -> x x) (\x -> x x)

(\x -> \y ->vy) OMEGA
Does this reduce to a normal form? Try it at home!

(\ a> (Vo a.))

6h no!
( Vo ) 1"b" aptured {”

Q\;H%:) i& =b> el [x::élj

" ?9( mal u . bpd{j" a

arg"

Programming in A-calculus

Real languages have lots of features

e Booleans
e Records (structs, tuples)
e Numbers

e got those]

e Recursion



Lets see how to encode all of these features with the A-calculus.

; ﬁ COND
B SFF
OB ymen

éﬁfb IF = \Cvnd, squf othey —
i

<NO(/ TRvE) = FASE AND =\b, by = IF b b Fie

CNW Fhse) = RUE OR. = \b b, IF b TWE by

W

NOoT = \b > IF P s Tuce

yot = \b9LF False

A-calculus: Booleans

How can we encode Boolean values ( TRUE and FALSE ) as functions?

Well, what do we do with a Boolean b ?



Make a binary choice

e i1f b then el else e2

Booleans: API

We need to define three functions



let TRUE = ?2?

let FALSE = ?2?

let ITE =\bxy -> 22?2 -- if b then x else y
such that

ITE TRUE apple banana =~> apple
ITE FALSE apple banana =~> banana

(Here, let NAME = e means NAME is an abbreviation for e )

Booleans: Implementation



let TRUE = \xy -> X -- Returns its first argument
let FALSE = \x y -> y -- Returns its second argument
let ITE =\bxy ->b xy -- Applies condition to branches
-- (redundant, but improves readability)

Example: Branches step-by-step



eval ite_true:
ITE TRUE el e2

=d> (\bxy ->b X y) TRUE el e2 -- expand def ITE
=b> (\x y -> TRUE x ) el e2 -- beta-step

=b> (\y -> TRUE el y) e2 -- beta-step

=b> TRUE el e2 -- expand def TRUE
=d> (\x y -> x) el e2 -- beta-step

=b> (\y ->el) e2 -- beta-step

=b> el

Example: Brandhes step-by-step
Now you try it!

Can you fill in the blanks to make it happen? (http://goto.ucsd.edu:8095/index.html#?demo=ite.lc)



eval ite_false:
ITE FALSE el e2

-- fill the steps in!

=b> e2

Boolean Operators

Now that we have ITE it’s easy to define other Boolean operators:



let NOT = \b -> 272

let AND = \b1l b2 -> ?22?

let OR = \bl b2 -> 2?7



let NOT = \b -> ITE b FALSE TRUE
let AND = \bl b2 -> ITE bl b2 FALSE
let OR = \bl b2 -> ITE bl TRUE b2

Or, since ITE isredundant:

let NOT = \b -> b FALSE TRUE
let AND = \bl b2 -> bl b2 FALSE
let OR = \bl b2 -> bl TRUE b2

Which definition to do you prefer and why?



/[ NCQ'TH

—

Lo, 30)

Programming in A-calculus

¢ Booleans [done] /

jﬁcords (structs, tuples) \ @ = g ‘ES{_ g /[./

) and v “cat!

. ot
e Recursion

f@f . A : [ 10, 20,30}
O

. sndl
o §

£r @aack V) V;) =V,
GND ((pack Vi) ) TV
HWN —> SUNDAY 4])y 233

e Numbers
» Functions [we got those]




What do we do with a pair+

1. Pack two items into a pair, then
2. Get first item, or
3. Get second item.

==



