x y -- no binders at all! \y -> x y -- no \x binder (\x -> \y -> y) x -- x is outside the scope of the \x binder; -- intuition: it's not "the same" x

"make"

 $(\lambda x \rightarrow x) \geq$

QUIZ In the expression $(x \rightarrow x)$ is x bound or free? A. bound

B. free

C. first occurrence is bound, second is free

D. first occurrence is bound, second and third are free

E. first two occurrences are bound, third is free

Free Variables

An variable x is **free** in e if *there exists* a free occurrence of x in e

We can formally define the set of *all free variables* in a term like so:

 $FV(x) = ??? \{x\}$ $FV(|x -> e) = ??? FV(e) - \{x\}$ $FV(e1 e2) = ??? FV(e) \cup FV(e_{2})$ $(\mathcal{J} \times \mathcal{I} \times \mathcal{I}) \xrightarrow{\mathcal{I}} dog$ $\underbrace{\mathcal{I}}_{e_1} \xrightarrow{\mathcal{I}}_{e_2} dog$

 $\setminus \times \longrightarrow \times$

"Closed 'Expressions

If e has no free variables it is said to be closed

Closed expressions are also called combinators

What is the shortest closed expression?

Rewrite Rules of Lambda Calculus

1. α -step (aka renaming formals) 2. β -step (aka function call)

Semantics: β -Reduction

where e1[x := e2] means "e1 with all *free* occurrences of x replaced with e2"

Computation by search-and-replace:

• If you see an *abstraction* applied to an *argument*, take the *body* of the abstraction and replace all free occurrences of the *formal* by that *argument*

• We say that
$$(x \rightarrow e1) e2 \beta$$
-steps to $e1[x := e2]$

Examples

(\x -> x) apple =b> apple

Is this right? Ask Elsa (http://goto.ucsd.edu:8095/index.html#?demo=blank.lc)!

$$(\uparrow \rightarrow BODY) ARG$$

 $(\uparrow -> f(\uparrow x -> x))$ (give apple)
=b> ???

QUIZ

A. apple

B. ∖y -> apple

C. \x -> apple

D. \y -> y

E. \x -> y

QUIZ


```
A. apple (\x -> x)
B. apple (\apple -> apple)
```

C. apple (\x -> apple)

D. apple

E. \x -> x

A Tricky One

 $(\langle x -> (\langle y -> x \rangle) y \\ =b> \langle y -> y \\ \langle m_{P} \rightarrow y \\ Is this right?$

Something is Fishy

(\x -> (\y -> x)) y =b> \y -> y

Is this right?

Problem: the *free* y in the argument has been **captured** by \y !

Solution: make sure that all *free variables* of the argument are different from the binders in the body.

Capture-Avoiding Substitution

We have to fix our definition of β -reduction:

(\x -> e1) e2 =b> e1[x := e2]

where e1[x := e2] means "e1 with all free occurrences of \times replaced with e2"

• e1 with all free occurrences of x replaced with e2, as long as no free variables of e2 get captured

• undefined otherwise

Formally:

```
x[x := e] = e
y[x := e] = y -- assuming x /= y
(e1 e2)[x := e] = (e1[x := e]) (e2[x := e])
(\x -> e1)[x := e] = \x -> e1 -- why do we leave `e1` alone?
(\y -> e1)[x := e]
| not (y in FV(e)) = \y -> e1[x := e]
| otherise = undefined -- wait, but what do we do then???
```

Rewrite Rules of Lambda Calculus

1. α -step (aka renaming formals)

2. β -step (aka function call)

$$\begin{array}{c} (\lambda \times \rightarrow e) \\ = & (\lambda \times \rightarrow e) \\ = & (\lambda \times \rightarrow e) \\ \lambda \times \rightarrow e \\ \lambda \rightarrow e \\ \lambda \times \rightarrow e \\ \lambda \times \rightarrow e \\ \lambda \rightarrow e$$

Semantics: α -Renaming

- We can rename a formal parameter and replace all its occurrences in the body
- We say that $x \rightarrow e \alpha$ -steps to $y \rightarrow e[x := y]$

Example:

\x -> x =a> \y -> y =a> \z -> z

All these expressions are *a*-equivalent

What's wrong with these?

The Tricky One

(\x -> (\y -> x)) y =a> ???

To avoid getting confused, you can always rename formals, so that different variables have different names!

Normal Forms

A **redex** is a λ -term of the form

(\x -> e1) e2

A λ -term is in **normal form** if it contains no redexes.

QUIZ

Which of the following terms are not in normal form? A. [x] B. [x] y NO Lambde! C. (\x -> x) y D. x (\y -> y) NOT a redex (because ison RIGHT) E. C and D

Semantics: Evaluation

A λ -term e evaluates to e' if

1. There is a sequence of steps

e =?> e_1 =?> ... =?> e_N =?> e'

where each =?> is either =a> or =b> and N >= 0

2. e' is in normal form

Examples of Evaluation

(\x -> x) apple
=b> apple

$$(\langle f \rightarrow f(\langle x \rightarrow x) \rangle) (\langle x \rightarrow x \rangle)$$

=?>???
$$(\langle x \rightarrow x \rangle) (\langle x \rightarrow x \rangle) (\langle x \rightarrow x \rangle)$$

=?>???

Elsa shortcuts

Named λ -terms:

let ID = $\setminus x \rightarrow x \rightarrow abbreviation for <math>|x \rightarrow x|$

To substitute name with its definition, use a =d> step:

```
ID apple
  =d> (\x -> x x) apple -- expand definition
  =b> apple -- beta-reduce
```

Evaluation:

- e1 =*> e2 : e1 reduces to e2 in 0 or more steps
 - \circ where each step is =a>, =b>, or =d>
- e1 =~> e2 : e1 evaluates to e2

What is the difference?

Non-Terminating Evaluation

(\x -> x x) (\x -> x x) =b> (\x -> x x) (\x -> x x)

Oops, we can write programs that loop back to themselves...

and never reduce to a normal form!

This combinator is called Ω

What if we pass Ω as an argument to another function?

let OMEGA = $(\langle x \rangle - \langle x \rangle x)$ $(\langle x \rangle - \langle x \rangle x)$

 $(x \rightarrow y \rightarrow y)$ OMEGA

Does this reduce to a normal form? Try it at home!

Programming in λ -calculus

Real languages have lots of features

- Booleans
- Records (structs, tuples)
- Numbers
- Functions [we got those]
- Recursion

Lets see how to *encode* all of these features with the λ -calculus.

if COND ELSE OTHER let $IF = \langle cond stuff other \rightarrow$ (NOT TRUE) = FALSE (NOT FALSE) = TRUE NOT = \b \rightarrow IF b FALSE True NOT = \b \rightarrow IF b FALSE True λ -calculus: Booleans

How can we encode Boolean values (TRUE and FALSE) as functions?

Well, what do we **do** with a Boolean b?

Make a binary choice

• if b then e1 else e2

Booleans: API

We need to define three functions

let TRUE = ???
let FALSE = ???
let ITE = \b x y -> ??? -- if b then x else y

such that

ITE TRUE apple banana =~> apple
ITE FALSE apple banana =~> banana

(Here, **let** NAME = e means NAME is an *abbreviation* for e)

Booleans: Implementation

Example: Branches step-by-step

eval ite_true: ITE TRUE e1 e2

Example: Branches step-by-step

Now you try it!

Can you fill in the blanks to make it happen? (http://goto.ucsd.edu:8095/index.html#?demo=ite.lc)

eval ite_false: ITE FALSE e1 e2

-- fill the steps in!

=b> e2

Boolean Operators

Now that we have ITE it's easy to define other Boolean operators:

let NOT = \b -> ???

let AND = \b1 b2 -> ???

let OR = \b1 b2 -> ???

let NOT = \b -> ITE b FALSE TRUE

let AND = \b1 b2 -> ITE b1 b2 FALSE

let OR = \b1 b2 -> ITE b1 TRUE b2

Or, since ITE is redundant:

let NOT = \b \rightarrow b FALSE TRUE
let AND = \b1 b2 \rightarrow b1 b2 FALSE
let OR = \b1 b2 \rightarrow b1 TRUE b2

Which definition to do you prefer and why?

"cat" E10,20,30] Programming in λ -calculus • Booleans [done] 0 = fst : 1 • Records (structs, tuples) Numbers , snd : "cat" • Functions [we got those] Recursion ->> thd : [10, 20, 30] o.fst o. snd Lo. that FST $((pack V_1) V_2) = V_1$ SND $((pack V_1) V_2) = V_2$ -> SUNDAY 4/14 23:59

Û calculus: Records Let's start with records with two fields (aka pairs) What do we do with a pair?

- 1. Pack two items into a pair, then
- 2. Get first item, or
- 3. Get second item.