
 x y -- no binders at all!

 \y -> x y -- no \x binder

 (\x -> \y -> y) x -- x is outside the scope of the \x binder;

 -- intuition: it's not "the same" x

QUIZ

In the expression (\x -> x) x , is x bound or free?

A. bound

B. free

C. �rst occurrence is bound, second is free

make

Xx x

stoofree
inmy
1st 2nd

D. �rst occurrence is bound, second and third are free

E. �rst two occurrences are bound, third is free

Free Variables

An variable x is free in e if there exists a free occurrence of x in e

We can formally de�ne the set of all free variables in a term like so:

FV(x) = ???

FV(\x -> e) = ???

FV(e1 e2) = ???

Closed Expressions

If e has no free variables it is said to be closed

Closed expressions are also called combinators

a
Free Ea
EVA UFuced

x a t dog
w

e ez

Ix x

What is the shortest closed expression?

Rewrite Rules of Lambda Calculus

1. α-step (aka renaming formals)

2. β-step (aka function call)

O
e e ez es equal

Semantics: β-Reduction

 (\x -> e1) e2 =b> e1[x := e2]

where e1[x := e2] means “ e1 with all free occurrences of x replaced with e2 ”

Computation by search-and-replace:

If you see an abstraction applied to an argument, take the body of the abstraction and replace all free

occurrences of the formal by that argument

We say that (\x -> e1) e2 β-steps to e1[x := e2]

OD

D D

Examples

(\x -> x) apple

=b> apple

Is this right? Ask Elsa (http://goto.ucsd.edu:8095/index.html#?demo=blank.lc)!

(\f -> f (\x -> x)) (give apple)

=b> ???

QUIZ

(\x -> (\y -> y)) apple

=b> ???

A. apple

B. \y -> apple

Cf qBoD4
R9

BODY f ARG

m
DY

C. \x -> apple

D. \y -> y

E. \x -> y

QUIZ

(\x -> x (\x -> x)) apple

=b> ???EtrTt
appleCtx x

A. apple (\x -> x)

B. apple (\apple -> apple)

C. apple (\x -> apple)

D. apple

E. \x -> x

A Tricky One

(\x -> (\y -> x)) y

=b> \y -> y

Is this right?

Something is Fishy

(\x -> (\y -> x)) y

=b> \y -> y

Is this right?

Hmp x

limp y

Problem: the free y in the argument has been captured by \y !

Solution: make sure that all free variables of the argument are di�erent from the binders in the body.

Capture-Avoiding Substitution

We have to �x our de�nition of β-reduction:

 (\x -> e1) e2 =b> e1[x := e2]

where e1[x := e2] means “ e1 with all free occurrences of x replaced with e2 ”

e1 with all free occurrences of x replaced with e2 , as long as no free variables of e2 get captured

t

egg

0

g

free vars DIFFTHAN params

unde�ned otherwise

Formally:

x[x := e] = e

y[x := e] = y -- assuming x /= y

(e1 e2)[x := e] = (e1[x := e]) (e2[x := e])

(\x -> e1)[x := e] = \x -> e1 -- why do we leave `e1` alone?

(\y -> e1)[x := e]

 | not (y in FV(e)) = \y -> e1[x := e]

 | otherise = undefined -- wait, but what do we do then???

Rewrite Rules of Lambda Calculus

1. α-step (aka renaming formals)

2. β-step (aka function call)

Semantics: α-Renaming

 \x -> e =a> \y -> e[x := y]

 where not (y in FV(e))

Xx se

Easily seExi yD
ay Azebra zebra

We can rename a formal parameter and replace all its occurrences in the body

We say that \x -> e α-steps to \y -> e[x := y]

Example:

\x -> x =a> \y -> y =a> \z -> z

All these expressions are α-equivalent

What’s wrong with these?

-- (A)

\f -> f x =a> \x -> x x

-- (B)

(\x -> \y -> y) y =a> (\x -> \z -> z) z

-- (C)

\x -> \y -> x y =a> \apple -> \orange -> apple orange

The Tricky One

(\x -> (\y -> x)) y

=a> ???

To avoid getting confused, you can always rename formals, so that di�erent variables have di�erent names!

Normal Forms

A redex is a λ-term of the form

(\x -> e1) e2

A λ-term is in normal form if it contains no redexes.

QUIZ

Which of the following term are not in normal form ?

A. x

B. x y

C. (\x -> x) y

D. x (\y -> y)

E. C and D

s
canstillbereduced

7 noLambda

NOTa redox becaux ison
RIGHT

Semantics: Evaluation

A λ-term e evaluates to e' if

1. There is a sequence of steps

e =?> e_1 =?> ... =?> e_N =?> e'

where each =?> is either =a> or =b> and N >= 0

2. e' is in normal form

Examples of Evaluation

(\x -> x) apple

 =b> apple

(\f -> f (\x -> x)) (\x -> x)

 =?> ???

(\x -> x x) (\x -> x)

 =?> ???

Elsa shortcuts

Named λ-terms:

f

let ID = \x -> x -- abbreviation for \x -> x

To substitute name with its de�nition, use a =d> step:

ID apple

 =d> (\x -> x x) apple -- expand definition

 =b> apple -- beta-reduce

Evaluation:

e1 =*> e2 : e1 reduces to e2 in 0 or more steps

where each step is =a> , =b> , or =d>

e1 =~> e2 : e1 evaluates to e2

What is the di�erence?

Non-Terminating Evaluation

(\x -> x x) (\x -> x x)

 =b> (\x -> x x) (\x -> x x)

Oops, we can write programs that loop back to themselves…

and never reduce to a normal form!

This combinator is called Ω

What if we pass Ω as an argument to another function?

let OMEGA = (\x -> x x) (\x -> x x)

(\x -> \y -> y) OMEGA

Does this reduce to a normal form? Try it at home!

Programming in λ-calculus

Real languages have lots of features

Booleans

Records (structs, tuples)

Numbers

Functions [we got those]

Recursion

la abansa cab

ibascca.bg
o

I bcaptured

Ix e ez
portal Iay arg life ez

0

Lets see how to encode all of these features with the λ-calculus.

λ-calculus: Booleans

How can we encode Boolean values (TRUE and FALSE) as functions?

Well, what do we do with a Boolean b ?

if cone
STUFF

Else other

let IF land stuffother

NOT TRUE FALSE AND lb bz IF b beFalse

0T FALSE TRUE OR lbbe IFbTRUEb

not b ie b easorrue

NOT lb a False

Make a binary choice

if b then e1 else e2

Booleans: API

We need to de�ne three functions

let TRUE = ???

let FALSE = ???

let ITE = \b x y -> ??? -- if b then x else y

such that

ITE TRUE apple banana =~> apple

ITE FALSE apple banana =~> banana

(Here, let NAME = e means NAME is an abbreviation for e)

Booleans: Implementation

let TRUE = \x y -> x -- Returns its first argument

let FALSE = \x y -> y -- Returns its second argument

let ITE = \b x y -> b x y -- Applies condition to branches

 -- (redundant, but improves readability)

Example: Branches step-by-step

eval ite_true:

 ITE TRUE e1 e2

 =d> (\b x y -> b x y) TRUE e1 e2 -- expand def ITE

 =b> (\x y -> TRUE x y) e1 e2 -- beta-step

 =b> (\y -> TRUE e1 y) e2 -- beta-step

 =b> TRUE e1 e2 -- expand def TRUE

 =d> (\x y -> x) e1 e2 -- beta-step

 =b> (\y -> e1) e2 -- beta-step

 =b> e1

Example: Branches step-by-step

Now you try it!

Can you �ll in the blanks to make it happen? (http://goto.ucsd.edu:8095/index.html#?demo=ite.lc)

eval ite_false:

 ITE FALSE e1 e2

 -- fill the steps in!

 =b> e2

Boolean Operators

Now that we have ITE it’s easy to de�ne other Boolean operators:

let NOT = \b -> ???

let AND = \b1 b2 -> ???

let OR = \b1 b2 -> ???

let NOT = \b -> ITE b FALSE TRUE

let AND = \b1 b2 -> ITE b1 b2 FALSE

let OR = \b1 b2 -> ITE b1 TRUE b2

Or, since ITE is redundant:

let NOT = \b -> b FALSE TRUE

let AND = \b1 b2 -> b1 b2 FALSE

let OR = \b1 b2 -> b1 TRUE b2

Which de�nition to do you prefer and why?

Programming in λ-calculus

Booleans [done]

Records (structs, tuples)

Numbers

Functions [we got those]

Recursion

1 cat

1020,30

Oz fast 8 I
send cat

o fest
thd 10,29303

o snd
booked

FST Gpack 4 Vz v

SND pack 4 K L

HW SUNDAY 4142359

λ-calculus: Records

Let’s start with records with two �elds (aka pairs)

What do we do with a pair?

1. Pack two items into a pair, then

2. Get �rst item, or

3. Get second item.

Xyz e a azaz
IE Ef azI eDasayad

