
  x y                -- no binders at all!   

  \y -> x y          -- no \x binder 

  (\x -> \y -> y) x  -- x is outside the scope of the \x binder; 

                     -- intuition: it's not "the same" x

 

 

 

 

 

 

 

 

 

 

 

QUIZ

In the expression (\x -> x) x , is x  bound or free?

A. bound

B. free

C. �rst occurrence is bound, second is free
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D. �rst occurrence is bound, second and third are free

E. �rst two occurrences are bound, third is free

 

 

 

 

 

 

 

 

 

 

 

 

Free Variables

An variable x  is free in e  if there exists a free occurrence of x  in e

 

We can formally de�ne the set of all free variables in a term like so:



FV(x)       = ??? 

FV(\x -> e) = ??? 

FV(e1 e2)   = ???

 

 

 

 

 

 

 

 

 

 

 

 

Closed Expressions

If e  has no free variables it is said to be closed

Closed expressions are also called combinators
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What is the shortest closed expression?

 

 

 

 

 

 

 

 

 

 

 

 

Rewrite Rules of Lambda Calculus

 

1. α-step (aka renaming formals)

2. β-step (aka function call)
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Semantics: β-Reduction

 

  (\x -> e1) e2   =b>   e1[x := e2]

 

where e1[x := e2]  means “ e1  with all free occurrences of x  replaced with e2 ”

 

 

Computation by search-and-replace:

If you see an abstraction applied to an argument, take the body of the abstraction and replace all free

occurrences of the formal by that argument

We say that (\x -> e1) e2  β-steps to e1[x := e2]
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Examples

 

(\x -> x) apple      

=b> apple

Is this right? Ask Elsa (http://goto.ucsd.edu:8095/index.html#?demo=blank.lc)!

 

 



(\f -> f (\x -> x)) (give apple) 

=b> ???

 

 

 

 

 

 

 

 

 

 

 

 

QUIZ

 

(\x -> (\y -> y)) apple 

=b> ???

A. apple

B. \y -> apple
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C. \x -> apple

D. \y -> y

E. \x -> y

 

 

 

 

 

 

 

 

 

 

 

 

QUIZ

 

(\x -> x (\x -> x)) apple 

=b> ???EtrTt
appleCtx x



A. apple (\x -> x)

B. apple (\apple -> apple)

C. apple (\x -> apple)

D. apple

E. \x -> x

 

 

 

 

 

 

 

 

 

 

 

 

A Tricky One

 



(\x -> (\y -> x)) y 

=b> \y -> y

Is this right?

 

 

 

 

 

 

 

 

 

 

 

 

Something is Fishy

 

(\x -> (\y -> x)) y 

=b> \y -> y

Is this right?

Hmp x

limp y



Problem: the free y  in the argument has been captured by \y !

Solution: make sure that all free variables of the argument are di�erent from the binders in the body.

 

 

 

 

 

 

 

 

 

 

 

 

Capture-Avoiding Substitution

We have to �x our de�nition of β-reduction:

  (\x -> e1) e2   =b>   e1[x := e2]

 

where e1[x := e2]  means “ e1  with all free occurrences of x  replaced with e2 ”

e1  with all free occurrences of x  replaced with e2 , as long as no free variables of e2  get captured
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unde�ned otherwise

 

Formally:

x[x := e]            = e 

y[x := e]            = y            -- assuming x /= y 

(e1 e2)[x := e]      = (e1[x := e]) (e2[x := e]) 

(\x -> e1)[x := e]   = \x -> e1     -- why do we leave `e1` alone? 

(\y -> e1)[x := e]  

  | not (y in FV(e)) = \y -> e1[x := e] 

  | otherise         = undefined    -- wait, but what do we do then???

 

 

 

 

 

 

 

 

 

 

 



Rewrite Rules of Lambda Calculus

 

1. α-step (aka renaming formals)

2. β-step (aka function call)

 

 

 

 

 

 

 

 

 

 

 

 

Semantics: α-Renaming

 

  \x -> e   =a>   \y -> e[x := y] 

    where not (y in FV(e))

Xx se
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We can rename a formal parameter and replace all its occurrences in the body

We say that \x -> e  α-steps to \y -> e[x := y]

 

 

Example:

\x -> x   =a>   \y -> y   =a>    \z -> z

All these expressions are α-equivalent

 

 

 

What’s wrong with these?

-- (A) 

\f -> f x    =a>   \x -> x x

-- (B) 

(\x -> \y -> y) y   =a>   (\x -> \z -> z) z

-- (C) 

\x -> \y -> x y   =a>    \apple -> \orange -> apple orange



 

 

 

 

 

 

 

 

 

 

 

 

 

The Tricky One

 

(\x -> (\y -> x)) y 

=a> ???

 

 

To avoid getting confused, you can always rename formals, so that di�erent variables have di�erent names!



 

 

 

 

 

 

 

 

 

 

 

 

Normal Forms

A redex is a λ-term of the form

(\x -> e1) e2

A λ-term is in normal form if it contains no redexes.

 

 

 

 

 



 

 

 

 

 

 

 

 

QUIZ

Which of the following term are not in normal form ?

A. x

B. x y

C. (\x -> x) y

D. x (\y -> y)

E. C and D
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Semantics: Evaluation

A λ-term e  evaluates to e'  if

1. There is a sequence of steps

e =?> e_1 =?> ... =?> e_N =?> e'

where each =?>  is either =a>  or =b>  and N >= 0

2. e'  is in normal form

 

 

 

 

 

 



Examples of Evaluation

(\x -> x) apple 

  =b> apple

 

(\f -> f (\x -> x)) (\x -> x) 

  =?> ???

 

(\x -> x x) (\x -> x) 

  =?> ???

 

 

 

 

 

 

Elsa shortcuts

Named λ-terms:

f



let ID = \x -> x  -- abbreviation for \x -> x

 

 

To substitute name with its de�nition, use a =d>  step:

ID apple 

  =d> (\x -> x x) apple  -- expand definition 

  =b> apple              -- beta-reduce

 

 

Evaluation:

e1 =*> e2 : e1  reduces to e2  in 0 or more steps

where each step is =a> , =b> , or =d>

e1 =~> e2 : e1  evaluates to e2

What is the di�erence?

 

 

 

 

 



 

 

 

 

 

 

 

Non-Terminating Evaluation

(\x -> x x) (\x -> x x) 

  =b> (\x -> x x) (\x -> x x)

Oops, we can write programs that loop back to themselves…

and never reduce to a normal form!

This combinator is called Ω

 

 

 

 

 

 

What if we pass Ω as an argument to another function?



let OMEGA = (\x -> x x) (\x -> x x) 

 

(\x -> \y -> y) OMEGA

Does this reduce to a normal form? Try it at home!

 

 

 

 

 

 

 

 

 

Programming in λ-calculus

Real languages have lots of features

Booleans

Records (structs, tuples)

Numbers

Functions [we got those]

Recursion
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Lets see how to encode all of these features with the λ-calculus.

 

 

 

 

 

 

 

 

 

 

 

 

λ-calculus: Booleans

 

How can we encode Boolean values ( TRUE  and FALSE ) as functions?

 

Well, what do we do with a Boolean b ?

if cone
STUFF

Else other

let IF land stuffother

NOT TRUE FALSE AND lb bz IF b beFalse

0T FALSE TRUE OR lbbe IFbTRUEb

not b ie b easorrue

NOT lb a False



 

 

 

 

 

 

 

 

 

 

 

 

Make a binary choice

if b then e1 else e2

 

 

 

Booleans: API

We need to de�ne three functions



let TRUE  = ??? 

let FALSE = ??? 

let ITE   = \b x y -> ???  -- if b then x else y

such that

ITE TRUE apple banana =~> apple 

ITE FALSE apple banana =~> banana

(Here, let NAME = e  means NAME  is an abbreviation for e )

 

 

 

 

 

 

 

 

 

 

 

 

Booleans: Implementation



let TRUE  = \x y -> x        -- Returns its first argument 

let FALSE = \x y -> y        -- Returns its second argument 

let ITE   = \b x y -> b x y  -- Applies condition to branches 

                             -- (redundant, but improves readability)

 

 

 

 

 

 

 

 

 

 

 

 

Example: Branches step-by-step



eval ite_true: 

  ITE TRUE e1 e2 

  =d> (\b x y -> b    x  y) TRUE e1 e2    -- expand def ITE   

  =b>   (\x y -> TRUE x  y)      e1 e2    -- beta-step 

  =b>     (\y -> TRUE e1 y)         e2    -- beta-step 

  =b>            TRUE e1 e2               -- expand def TRUE 

  =d>     (\x y -> x) e1 e2               -- beta-step 

  =b>       (\y -> e1)   e2               -- beta-step 

  =b> e1

 

 

 

 

 

 

Example: Branches step-by-step

Now you try it!

Can you �ll in the blanks to make it happen? (http://goto.ucsd.edu:8095/index.html#?demo=ite.lc)



eval ite_false: 

  ITE FALSE e1 e2 

 

  -- fill the steps in! 

 

  =b> e2  

 

 

 

 

 

 

 

 

 

 

 

 

Boolean Operators

Now that we have ITE  it’s easy to de�ne other Boolean operators:



let NOT = \b     -> ??? 

 

let AND = \b1 b2 -> ??? 

 

let OR  = \b1 b2 -> ???

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



let NOT = \b     -> ITE b FALSE TRUE  

 

let AND = \b1 b2 -> ITE b1 b2 FALSE 

 

let OR  = \b1 b2 -> ITE b1 TRUE b2

 

 

Or, since ITE  is redundant:

let NOT = \b     -> b FALSE TRUE  

 

let AND = \b1 b2 -> b1 b2 FALSE 

 

let OR  = \b1 b2 -> b1 TRUE b2

 

Which de�nition to do you prefer and why?

 

 

 

 

 

 



 

 

 

 

 

Programming in λ-calculus

Booleans [done]

Records (structs, tuples)

Numbers

Functions [we got those]

Recursion
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λ-calculus: Records

Let’s start with records with two �elds (aka pairs)

What do we do with a pair?

1. Pack two items into a pair, then

2. Get �rst item, or

3. Get second item.
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