Programming in A-calculus

e Booleans [done] /

Records (structs, tuples)

e Numbers

Functions [we got those] .~

e Recursion

Vi Nz I

§ ?O»CK v, V. = Nchie — e dwie Vi Ve
_—

1(’36 bo)(= \ olhsice » choice TRUE

snd = box

=

A-calculus: Records

Let’s start with records with two fields (aka pairs)
What do we do with a pair?

1. Pack two items into a pair, then
2. Get first item, or
3. Get second item.

Pairs : API

We need to define three functions

let PAIR = \x y -> ?2? -- Make a pair with elements x and y
--{ fst : x, snd : y }

let FST = \p -> ?22? -- Return first element
-- p.fst

let SND = \p -> 227 -- Return second element
-- p.snd

such that

FST (PAIR apple banana) =~> apple
SND (PAIR apple banana) =~> banana

Pairs: Implementation

Apair of x and y is just something that lets you pick between x and y ! (Le. a function that takes a boolean and

returns either x or y)

let PAIR = \x y -> (\b -> ITE b x y)
let FST = \p -> p TRUE -- call w/ TRUE, get first value
let SND = \p -> p FALSE -- call w/ FALSE, get second value

Exercise: Triples?

How can we implement a record that contains three values?

let TRIPLE = \x y z -> ?2?

let FST3 =\t -> ???
let SND3 =\t -> ???
let TRD3 = \t -> ???

Programming in A-calculus

e Booleans [done]

Records (structs, tuples) [done]
¢ Numbers
» Functions [we got those]

e Recursion

A-calculus: Numbers

Let’s start with natural numbers (0, 1, 2, ...)

What do we do with natural numbers?

e Count: 0, inc
e Arithmetic: dec, +, -, *

o Comparisons: ==, <=, etc

Natural Numbers: API

We need to define:

e Afamily of numerals: ZERO, ONE, TWO, THREE, ...
o Arithmetic functions: INC, DEC, ADD, SUB, MULT
o Comparisons: IS_ZERO, EQ

Such that they respect all regular laws of arithmetic, e.g.

IS_ZERO ZERO —~> TRUE
IS_ZERO (INC ZERO) =~> FALSE
INC ONE =~> TWO

Natural Numbers: Implementation

Church numerals: a number N is encoded as a combinator that calls a function on an argument N times

let ONE = \f x -> f x

let TWO = \f x -> f (f x)

let THREE = \f x -> f (f (f x))

let FOUR = \f x -> f (f (f (f x)))

let FIVE = \f x -> f (f (f (f (f x))))

let SIX = \f x -> f (f (f (f (f (f x)))))
QUIZ: Church Numerals

Which of these is a valid encoding of ZERO ?

e A: let ZERO = \f x -> x
e B: let ZERO = \f x -> f
e C: let ZERO = \f x -> f x
e D: let ZERO = \x -> X

E: None of the above

Does this function look familiar?

A-calculus: Increment

- Call “f* on “x° one more time than 'n’ does
let INC = \n -> (\f x -> 22?2)

Example:

eval inc_zero :
INC ZERO
=d> (\n f x -> f (n f x)) ZERO
=b> \f x -> f (ZERO f x)
=*> \f x -> f x
=d> ONE

QuIZ 2y

How shall we implement ADD ?
P /'C nlne m
A.let ADD = \n m -> n INC m
4\ x (EV1C.,. |u(.<]}4é (}(“: Hﬂ‘)J
num _/\/_/

WM\

Nt

\nm -> th n)m 2 (4)

\nm->nmINC

B. let ADD

C. let ADD

D. let ADD = \n m -> n (m INC)

E. let ADD = \n m -> n (INC m)
MoL M nw
= m oem A (0

N VYI“{—CVVH—(WU' O))
Cx/—\/\(/—\/\/

o

A-calculus: Addition

-- Call “f* on “x' exactly 'n + m’ times
let ADD = \n m -> n INC m

Example:

eval add_one_zero :
ADD ONE ZERO
=~> ONE

QUIZ

How shall we implement MULT ?

A. let MULT = \n m -> n ADD m

B. let MULT = \n m -> n (ADD m) ZERO
C. let MULT = \n m -> m (ADD n) ZERO
D. let MULT = \n m -> n (ADD m ZERO)
E. let MULT = \n m -> (n ADD m) ZERO

A-calculus: Multiplication

-- Call “f* on “x" exactly 'n * m' times
let MULT = \n m -> n (ADD m) ZERO

Example:

eval two_times_three :
MULT TWO ONE
=~> TWO

Programming in A-calculus

o Booleans [done] /

Records (structs, tuples) [done] ‘/

Numbers [done] —
Functions [we got those] /

Recursion

o |[SZEERD

ODEQ @lbﬁirﬁ

s CKIP{

n £x
A-calculus: Recursion

I want to write a function that sums up natural numbersup to n:

\n -> ... -1+ 2+ ... +N

sup) = N> lF Tt foe b Y

QUIZ

Is this a correct implementation of SUM ?

let SUM = \n -> ITE (ISZ n)
ZERO
(ADD n (SUM (DEC n)))

A.Yes

B. No

No!

o Named terms in Elsa are just syntactic sugar
e To translate an Elsa term to 1-calculus: replace each name with its definition

\n -> ITE (ISZ n)
ZERO
(ADD n (SUM (DEC n))) -- But SUM is not a thing!

Recursion:

e Inside this function I want to call the same function on DEC n

Looks like we can’t do recursion, because it requires being able to refer to functions by name, but in 1-calculus

functions are anonymous.

Right?

A-calculus: Recursion

Think again!

Recursion:

PEC—H

e Inside this function I want to call a function on DEC n
e And BTW, I want it to be the same function

Step 1: Pass in the function to call “recursively”

let T =
@» \n -> ITE (ISZ n)
R ZERO

a
(ADD n(DEC n))) -- Call some rec
\\ _f

Step 2: Do something clever to STEP , so that the function passed as rec itself becomes

\n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))

A-calculus: Fixpoint Combinator

: mbinator FIX suchthat FIX STEP calls STEP with itself as the first argument:
TEP
> STEP (FIX STEP)

(In math: a fixpoint of a function f(x) is a point x, such that f(x) = x)

Once we have it, we can define:

let SUM = FIX STEP

Then by property of FIX we have:

SUM =*> STEP SUM -- (1)

eval sum_one:

SUM
=%>
=d>
=b>

=b>
=*>
=%*>

=d>

=b>
=b>
=b>

=~>

ONE
STEP SUM ONE -- (1)
(\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ONE
(\n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ONE

-- 22 the magic happened!
ITE (ISZ ONE) ZERO (ADD ONE (SUM (DEC ONE)))

ADD ONE (SUM ZERO) -- def of ISz, ITE, DEC,
ADD ONE (STEP SUM ZERO) -~ (1)
ADD ONE

((\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ZERO)
ADD ONE ((\n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ZERO)
ADD ONE (ITE (ISZ ZERO) ZERO (ADD ZERO (SUM (DEC ZER0))))

ADD ONE ZERO
ONE

How should we define FIX ???

The Y combinator

Remember Q?

(\x -> x x) (\x -> x x)
=b> (\x -> x x) (\x -> x x)

This is self-replcating code! We need something like this but a bit more involved...

The Y combinator discovered by Haskell Curry:

let FIX = \stp -> (\x -> stp (x x)) (\x -> stp (x x))

How does it work? Vv

eval fix_step: W))+ m o+ YL
FIX STEP
=d> (\stp -> (\x -> stp (x x)) (\x -> stp (x x))) STEP

=b> (\x -> STEP (x x)) (\x -> STEP (x x))
=b> STEP ((\x -> STEP (x x)) (\x -> STEP (x x)))
- ANANANAANAAAN this is FIX STEP ANANANNANAANAAAAN

\'

That’s all folks!

(https://ucsd-cse130.github.io/sp19/feed.xml) (https://twitter.com/ranjitjhala)
(https://plus.google.com/u/0/104385825850161331469) (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher (http://lucumr.pocoo.org),
suggest improvements here (https://github.com/ucsd-progsys/liquidhaskell-blog/).

