
 

 

 

 

 

Programming in λ-calculus

Booleans [done]

Records (structs, tuples)

Numbers

Functions [we got those]

Recursion
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λ-calculus: Records

Let’s start with records with two �elds (aka pairs)

What do we do with a pair?

1. Pack two items into a pair, then

2. Get �rst item, or

3. Get second item.

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Pairs : API

We need to de�ne three functions

let PAIR = \x y -> ???    -- Make a pair with elements x and y  

                          -- { fst : x, snd : y } 

let FST  = \p -> ???      -- Return first element  

                          -- p.fst 

let SND  = \p -> ???      -- Return second element 

                          -- p.snd

such that

FST (PAIR apple banana) =~> apple 

SND (PAIR apple banana) =~> banana

 

 

 

 

 

 



 

 

 

 

 

 

Pairs: Implementation

A pair of x  and y  is just something that lets you pick between x  and y ! (I.e. a function that takes a boolean and

returns either x  or y )

let PAIR = \x y -> (\b -> ITE b x y) 

let FST  = \p -> p TRUE   -- call w/ TRUE, get first value 

let SND  = \p -> p FALSE  -- call w/ FALSE, get second value

 

 

 

 

 

 

 

 

 



 

 

 

Exercise: Triples?

How can we implement a record that contains three values?

let TRIPLE = \x y z -> ??? 

let FST3  = \t -> ??? 

let SND3  = \t -> ??? 

let TRD3  = \t -> ???
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Programming in λ-calculus

Booleans [done]

Records (structs, tuples) [done]

Numbers

Functions [we got those]

Recursion

 

 

 

 

 

 

 

 

 

 

 

 

λ-calculus: Numbers

Let’s start with natural numbers (0, 1, 2, …)

What do we do with natural numbers?
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Count: 0 , inc

Arithmetic: dec , + , - , *

Comparisons: == , <= , etc

 

 

 

 

 

 

 

 

 

 

 

 

Natural Numbers: API

We need to de�ne:

A family of numerals: ZERO , ONE , TWO , THREE , …

Arithmetic functions: INC , DEC , ADD , SUB , MULT

Comparisons: IS_ZERO , EQ

Such that they respect all regular laws of arithmetic, e.g.



IS_ZERO ZERO       =~> TRUE 

IS_ZERO (INC ZERO) =~> FALSE 

INC ONE            =~> TWO 

...

 

 

 

 

 

 

 

 

 

 

 

 

Natural Numbers: Implementation

Church numerals: a number N  is encoded as a combinator that calls a function on an argument N  times



let ONE   = \f x -> f x 

let TWO   = \f x -> f (f x) 

let THREE = \f x -> f (f (f x)) 

let FOUR  = \f x -> f (f (f (f x))) 

let FIVE  = \f x -> f (f (f (f (f x)))) 

let SIX   = \f x -> f (f (f (f (f (f x))))) 

...

 

 

 

 

 

 

 

 

 

 

 

 

QUIZ: Church Numerals

Which of these is a valid encoding of ZERO  ?



A: let ZERO = \f x -> x

B: let ZERO = \f x -> f

C: let ZERO = \f x -> f x

D: let ZERO = \x -> x

E: None of the above

 

 

 

Does this function look familiar?

 

 

 

 

 

 

 

 

 

 

 



λ-calculus: Increment

-- Call `f` on `x` one more time than `n` does 

let INC   = \n -> (\f x -> ???)

 

 

 

 

 

 

 

 

 

 

 

 

Example:
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eval inc_zero : 

  INC ZERO 

  =d> (\n f x -> f (n f x)) ZERO 

  =b> \f x -> f (ZERO f x) 

  =*> \f x -> f x 

  =d> ONE

 

 

 

 

 

 

 

 

 

 

 

 

QUIZ

How shall we implement ADD ?

A. let ADD = \n m -> n INC m
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B. let ADD = \n m -> INC n m

C. let ADD = \n m -> n m INC

D. let ADD = \n m -> n (m INC)

E. let ADD = \n m -> n (INC m)

 

 

 

 

 

 

 

 

 

 

 

 

λ-calculus: Addition

--  Call `f` on `x` exactly `n + m` times 

let ADD = \n m -> n INC m
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Example:

eval add_one_zero : 

  ADD ONE ZERO 

  =~> ONE

 

 

 

 

 

 

 

 

 

 

 

 

QUIZ

How shall we implement MULT ?



A. let MULT = \n m -> n ADD m

B. let MULT = \n m -> n (ADD m) ZERO

C. let MULT = \n m -> m (ADD n) ZERO

D. let MULT = \n m -> n (ADD m ZERO)

E. let MULT = \n m -> (n ADD m) ZERO

 

 

 

 

 

 

 

 

 

 

 

 

λ-calculus: Multiplication

--  Call `f` on `x` exactly `n * m` times 

let MULT = \n m -> n (ADD m) ZERO



 

 

 

Example:

eval two_times_three : 

  MULT TWO ONE 

  =~> TWO

 

 

 

 

 

 

 

 

 

 

 

 

Programming in λ-calculus

Booleans [done]



Records (structs, tuples) [done]

Numbers [done]

Functions [we got those]

Recursion

 

 

 

 

 

 

 

 

 

 

 

 

λ-calculus: Recursion

 

I want to write a function that sums up natural numbers up to n :

\n -> ...          -- 1 + 2 + ... + n
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QUIZ

Is this a correct implementation of SUM ?

let SUM = \n -> ITE (ISZ n)  

            ZERO  

            (ADD n (SUM (DEC n)))

A. Yes

B. No

 

 

 



 

 

 

 

 

 

 

No!

Named terms in Elsa are just syntactic sugar

To translate an Elsa term to λ-calculus: replace each name with its de�nition

\n -> ITE (ISZ n)  

        ZERO  

        (ADD n (SUM (DEC n))) -- But SUM is not a thing!

 

 

Recursion:

Inside this function I want to call the same function on DEC n

 

 



Looks like we can’t do recursion, because it requires being able to refer to functions by name, but in λ-calculus

functions are anonymous.

Right?

 

 

 

 

 

 

 

 

 

 

 

 

λ-calculus: Recursion

Think again!

 

 

Recursion:



Inside this function I want to call the same function on DEC n

Inside this function I want to call a function on DEC n

And BTW, I want it to be the same function

 

 

Step 1: Pass in the function to call “recursively”

let STEP =  

  \rec -> \n -> ITE (ISZ n)  

                  ZERO  

                  (ADD n (rec (DEC n))) -- Call some rec

 

 

Step 2: Do something clever to STEP , so that the function passed as rec  itself becomes

\n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))

 

 

 

 

 

 



 

 

 

 

 

 

λ-calculus: Fixpoint Combinator

Wanted: a combinator FIX  such that FIX STEP  calls STEP  with itself as the �rst argument:

FIX STEP 

=*> STEP (FIX STEP)

 

(In math: a �xpoint of a function f(x) is a point x, such that f(x) = x)

 

 

 

 

Once we have it, we can de�ne:

let SUM = FIX STEP

F



Then by property of FIX  we have:

SUM =*> STEP SUM -- (1)

eval sum_one: 

  SUM ONE 

  =*> STEP SUM ONE                 -- (1) 

  =d> (\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ONE 

  =b> (\n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ONE  

                                   -- ^^^ the magic happened! 

  =b> ITE (ISZ ONE) ZERO (ADD ONE (SUM (DEC ONE))) 

  =*> ADD ONE (SUM ZERO)           -- def of ISZ, ITE, DEC, ... 

  =*> ADD ONE (STEP SUM ZERO)      -- (1) 

  =d> ADD ONE  

        ((\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ZERO) 

  =b> ADD ONE ((\n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ZERO) 

  =b> ADD ONE (ITE (ISZ ZERO) ZERO (ADD ZERO (SUM (DEC ZERO)))) 

  =b> ADD ONE ZERO 

  =~> ONE

How should we de�ne FIX ???

 

 

 

 



 

 

 

 

 

 

 

 

The Y combinator

Remember Ω?

(\x -> x x) (\x -> x x) 

=b> (\x -> x x) (\x -> x x)

This is self-replcating code! We need something like this but a bit more involved…

 

 

 

 

The Y combinator discovered by Haskell Curry:

let FIX   = \stp -> (\x -> stp (x x)) (\x -> stp (x x))



 

 

How does it work?

eval fix_step: 

  FIX STEP 

  =d> (\stp -> (\x -> stp (x x)) (\x -> stp (x x))) STEP 

  =b> (\x -> STEP (x x)) (\x -> STEP (x x)) 

  =b> STEP ((\x -> STEP (x x)) (\x -> STEP (x x))) 

  --       ^^^^^^^^^^ this is FIX STEP ^^^^^^^^^^^

 

 

 

 

 

That’s all folks!
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(https://plus.google.com/u/0/104385825850161331469)  (https://github.com/ranjitjhala)
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