

Programming in λ-calculus

Booleans [done]

Records (structs, tuples)

Numbers

Functions [we got those]

Recursion

lyingi
pagk v v choice iiichoice v ve

fst box Lchoice choicetrue
boxTRUE

szd box boxFalse

F e
F Ix e

λ-calculus: Records

Let’s start with records with two �elds (aka pairs)

What do we do with a pair?

1. Pack two items into a pair, then

2. Get �rst item, or

3. Get second item.

Pairs : API

We need to de�ne three functions

let PAIR = \x y -> ??? -- Make a pair with elements x and y

 -- { fst : x, snd : y }

let FST = \p -> ??? -- Return first element

 -- p.fst

let SND = \p -> ??? -- Return second element

 -- p.snd

such that

FST (PAIR apple banana) =~> apple

SND (PAIR apple banana) =~> banana

Pairs: Implementation

A pair of x and y is just something that lets you pick between x and y ! (I.e. a function that takes a boolean and

returns either x or y)

let PAIR = \x y -> (\b -> ITE b x y)

let FST = \p -> p TRUE -- call w/ TRUE, get first value

let SND = \p -> p FALSE -- call w/ FALSE, get second value

Exercise: Triples?

How can we implement a record that contains three values?

let TRIPLE = \x y z -> ???

let FST3 = \t -> ???

let SND3 = \t -> ???

let TRD3 = \t -> ???

b

pack packv ve vs

Programming in λ-calculus

Booleans [done]

Records (structs, tuples) [done]

Numbers

Functions [we got those]

Recursion

λ-calculus: Numbers

Let’s start with natural numbers (0, 1, 2, …)

What do we do with natural numbers?

D

g 3 If x ffCfx

0 tf x a

g If ff fCfcf
n tf x f f x
Operators
incdecaddsubmuc rt

compare
eeeless

Count: 0 , inc

Arithmetic: dec , + , - , *

Comparisons: == , <= , etc

Natural Numbers: API

We need to de�ne:

A family of numerals: ZERO , ONE , TWO , THREE , …

Arithmetic functions: INC , DEC , ADD , SUB , MULT

Comparisons: IS_ZERO , EQ

Such that they respect all regular laws of arithmetic, e.g.

IS_ZERO ZERO =~> TRUE

IS_ZERO (INC ZERO) =~> FALSE

INC ONE =~> TWO

...

Natural Numbers: Implementation

Church numerals: a number N is encoded as a combinator that calls a function on an argument N times

let ONE = \f x -> f x

let TWO = \f x -> f (f x)

let THREE = \f x -> f (f (f x))

let FOUR = \f x -> f (f (f (f x)))

let FIVE = \f x -> f (f (f (f (f x))))

let SIX = \f x -> f (f (f (f (f (f x)))))

...

QUIZ: Church Numerals

Which of these is a valid encoding of ZERO ?

A: let ZERO = \f x -> x

B: let ZERO = \f x -> f

C: let ZERO = \f x -> f x

D: let ZERO = \x -> x

E: None of the above

Does this function look familiar?

λ-calculus: Increment

-- Call `f` on `x` one more time than `n` does

let INC = \n -> (\f x -> ???)

Example:

f fx
THREE tf x fCfCf x

fire goo da
qgooooo900 goocgoocgooaa

aa
N goo aa

go o aa

eval inc_zero :

 INC ZERO

 =d> (\n f x -> f (n f x)) ZERO

 =b> \f x -> f (ZERO f x)

 =*> \f x -> f x

 =d> ONE

QUIZ

How shall we implement ADD ?

A. let ADD = \n m -> n INC m

nf x
f n Inc m

p ne lu nc lncm
mum

B. let ADD = \n m -> INC n m

C. let ADD = \n m -> n m INC

D. let ADD = \n m -> n (m INC)

E. let ADD = \n m -> n (INC m)

λ-calculus: Addition

-- Call `f` on `x` exactly `n + m` times

let ADD = \n m -> n INC m

n

f y 3 4

MU L m n

mm t m t t to

in Mt Mt Mt 0

he

Example:

eval add_one_zero :

 ADD ONE ZERO

 =~> ONE

QUIZ

How shall we implement MULT ?

A. let MULT = \n m -> n ADD m

B. let MULT = \n m -> n (ADD m) ZERO

C. let MULT = \n m -> m (ADD n) ZERO

D. let MULT = \n m -> n (ADD m ZERO)

E. let MULT = \n m -> (n ADD m) ZERO

λ-calculus: Multiplication

-- Call `f` on `x` exactly `n * m` times

let MULT = \n m -> n (ADD m) ZERO

Example:

eval two_times_three :

 MULT TWO ONE

 =~> TWO

Programming in λ-calculus

Booleans [done]

Records (structs, tuples) [done]

Numbers [done]

Functions [we got those]

Recursion

λ-calculus: Recursion

I want to write a function that sums up natural numbers up to n :

\n -> ... -- 1 + 2 + ... + n

IS ZERO
1

DEC I b a 5

SKIP'd ftp.T
of n l

Nfx Narn

SUM In It 2 tf f t N

QUIZ

Is this a correct implementation of SUM ?

let SUM = \n -> ITE (ISZ n)

 ZERO

 (ADD n (SUM (DEC n)))

A. Yes

B. No

No!

Named terms in Elsa are just syntactic sugar

To translate an Elsa term to λ-calculus: replace each name with its de�nition

\n -> ITE (ISZ n)

 ZERO

 (ADD n (SUM (DEC n))) -- But SUM is not a thing!

Recursion:

Inside this function I want to call the same function on DEC n

Looks like we can’t do recursion, because it requires being able to refer to functions by name, but in λ-calculus

functions are anonymous.

Right?

λ-calculus: Recursion

Think again!

Recursion:

Inside this function I want to call the same function on DEC n

Inside this function I want to call a function on DEC n

And BTW, I want it to be the same function

Step 1: Pass in the function to call “recursively”

let STEP =

 \rec -> \n -> ITE (ISZ n)

 ZERO

 (ADD n (rec (DEC n))) -- Call some rec

Step 2: Do something clever to STEP , so that the function passed as rec itself becomes

\n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))

λ-calculus: Fixpoint Combinator

Wanted: a combinator FIX such that FIX STEP calls STEP with itself as the �rst argument:

FIX STEP

=*> STEP (FIX STEP)

(In math: a �xpoint of a function f(x) is a point x, such that f(x) = x)

Once we have it, we can de�ne:

let SUM = FIX STEP

F

Then by property of FIX we have:

SUM =*> STEP SUM -- (1)

eval sum_one:

 SUM ONE

 =*> STEP SUM ONE -- (1)

 =d> (\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ONE

 =b> (\n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ONE

 -- ^^^ the magic happened!

 =b> ITE (ISZ ONE) ZERO (ADD ONE (SUM (DEC ONE)))

 =*> ADD ONE (SUM ZERO) -- def of ISZ, ITE, DEC, ...

 =*> ADD ONE (STEP SUM ZERO) -- (1)

 =d> ADD ONE

 ((\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ZERO)

 =b> ADD ONE ((\n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ZERO)

 =b> ADD ONE (ITE (ISZ ZERO) ZERO (ADD ZERO (SUM (DEC ZERO))))

 =b> ADD ONE ZERO

 =~> ONE

How should we de�ne FIX ???

The Y combinator

Remember Ω?

(\x -> x x) (\x -> x x)

=b> (\x -> x x) (\x -> x x)

This is self-replcating code! We need something like this but a bit more involved…

The Y combinator discovered by Haskell Curry:

let FIX = \stp -> (\x -> stp (x x)) (\x -> stp (x x))

How does it work?

eval fix_step:

 FIX STEP

 =d> (\stp -> (\x -> stp (x x)) (\x -> stp (x x))) STEP

 =b> (\x -> STEP (x x)) (\x -> STEP (x x))

 =b> STEP ((\x -> STEP (x x)) (\x -> STEP (x x)))

 -- ^^^^^^^^^^ this is FIX STEP ^^^^^^^^^^^

That’s all folks!

(https://ucsd-cse130.github.io/sp19/feed.xml) (https://twitter.com/ranjitjhala)

(https://plus.google.com/u/0/104385825850161331469) (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher (http://lucumr.pocoo.org),

suggest improvements here (https://github.com/ucsd-progsys/liquidhaskell-blog/).

Ktlmj Get 01

m t m t m t m

