
A crash course in Haskell

Functions and Programming

Carmack on Functions

What is Haskell?

A typed, lazy, purely functional programming language

Haskell = λ-calculus ++

Lava 1995 ggdekhslee1992

quake doom
FPS

better syntax

types

built-in features

booleans, numbers, characters

records (tuples)

lists

recursion

…

Why Haskell?

Haskell programs tend to be simple and correct

QuickSort in Haskell

sort :: (Ord a) => [a] -> [a]

sort [] = []

sort (x:xs) = sort ls ++ [x] ++ sort rs

 where

 ls = [l | l <- xs, l <= x]

 rs = [r | r <- xs, x < r]

Goals for this week

1. Understand the code above

2. Understand what typed, lazy, and purely functional means (and why it’s cool)

Haskell vs λ-calculus: similarities

(1) Programs

A program is an expression (not a sequence of statements)

fin goat

e x I e l e e

It evaluates to a value (it does not perform actions)

λ:

(\x -> x) apple -- =~> apple

Haskell:

(\x -> x) "apple" -- =~> "apple"

(2) Functions

Functions are �rst-class values:

can be passed as arguments to other functions

can be returned as results from other functions

can be partially applied (arguments passed one at a time)

(\x -> (\y -> x (x y))) (\z -> z + 1) 0 -- =~> ???

But: unlike λ-calculus, not everything is a function!

(3) Top-level bindings

Like in Elsa, we can name terms to use them later

Elsa:

let T = \x y -> x

let F = \x y -> y

let PAIR = \x y -> \b -> ITE b x y

let FST = \p -> p T

let SND = \p -> p F

eval fst:

 FST (PAIR apple orange)

 =~> apple

Haskell:

haskellIsAwesome = True

pair = \x y -> \b -> if b then x else y

fst = \p -> p haskellIsAwesome

snd = \p -> p False

-- In GHCi:

> fst (pair "apple" "orange") -- "apple"

The names are called top-level variables

Their de�nitions are called top-level bindings

Better Syntax: Equations and Patterns

You can de�ne function bindings using equations:

pair x y b = if b then x else y -- same as: pair = \x y b -> ...

fst p = p True -- same as: fst = \p -> ...

snd p = p False -- same as: snd = \p -> ...

A single function binding can have multiple equations with di�erent patterns of parameters:

pair x y True = x -- If 3rd arg matches True,

 -- use this equation;

pair x y False = y -- Otherwise, if 3rd arg matches False,

 -- use this equation.

At run time, the �rst equation whose pattern matches the actual arguments is chosen

For now, a pattern is:

a variable (matches any value)

or a value (matches only that value)

Same as:

pair x y True = x -- If 3rd arg matches True,

 -- use this equation;

pair x y b = y -- Otherwise, use this equation.

Same as:

pair x y True = x

pair x y _ = y

QUIZ

Which of the following de�nitions of pair is incorrect?

A. pair x y = \b -> if b then x else y

B. pair x = \y b -> if b then x else y

C.

pair x _ True = x

pair _ y _ = y

D.

pair x y b = x

pair x y False = y

E. all of the above

ETSI

Equations with guards

An equation can have multiple guards (Boolean expressions):

cmpSquare x y | x > y*y = "bigger :)"

 | x == y*y = "same :|"

 | x < y*y = "smaller :("

Same as:

cmpSquare x y | x > y*y = "bigger :)"

 | x == y*y = "same :|"

 | otherwise = "smaller :("

Recusion

Recursion is built-in, so you can write:

sum n = if n == 0

 then 0

 else n + sum (n - 1)

or you can write:

sum 0 = 0

sum n = n + sum (n - 1)

The scope of variables

Top-level variable have global scope, so you can write:

message = if haskellIsAwesome -- this var defined below

 then "I love CSE 130"

 else "I'm dropping CSE 130"

haskellIsAwesome = True

Or you can write:

-- What does f compute?

f 0 = True

f n = g (n - 1) -- mutual recursion!

g 0 = False

g n = f (n - 1) -- mutual recursion!

Is this allowed?

Type Err

f 3 evaluate to True

False

is even InfiniteLoop

I g z
FL
goFalse

haskellIsAwesome = True

haskellIsAwesome = False -- changed my mind

Local variables

You can introduce a new (local) scope using a let -expression:

sum 0 = 0

sum n = let n' = n - 1

 in n + sum n' -- the scope of n' is the term after in

Syntactic sugar for nested let -expressions:

sum 0 = 0

sum n = let

 n' = n - 1

 sum' = sum n'

 in n + sum'

If you need a variable whose scope is an equation, use the where clause instead:

cmpSquare x y | x > z = "bigger :)"

 | x == z = "same :|"

 | x < z = "smaller :("

 where z = y*y

Types

What would Elsa say?

let WEIRDO = ONE ZERO

What would Python say?

def weirdo():

 return 0(1)

What would Java say?

void weirdo() {

 int zero;

 zero(1);

}

In Haskell every expression either has a type or is ill-typed and rejected statically (at compile-time, before

execution starts)

like in Java

unlike λ-calculus or Python

weirdo = 1 0 -- rejected by GHC

