Jowo—]41§ s —
Hanle, }%z')\ ——LM%
A crash course in Haskell

FrS

Functions and Programming
5= JohnC k @
& e -
Sometimes, the elegant implementation is
just a function. Not a method. Not a class.

Not a framework. Just a function.

10:41 AM - 31 Mar 2011

Carmack on Functions

What is Haskell?

A typed, lazy, purely functional programming language

Haskell = 1-calculus ++

v

e better syntax

e types
e built-in features

o booleans, numbers, characters

[e]

records (tuples)
lists

[e]

recursion

[e]

Why Haskell?

Haskell programs tend to be simple and correct

QuickSort in Haskell

‘/m Jom’ﬂ’

sort :: (Ord a) :>k[a]-1> [a]
[]

sort []
sort (x:xs)

sort 1s ++ [x] ++ sort rs

where
1s =[1] 1<-xs, 1 <=x]
rs =[r | r<-xs, x< r]

Goals for this week

1. Understand the code above
2. Understand what typed Wand purely functional means (and why it’s cool)

Haskell vs A-calculus: similarities

(1) Programs ¢ = =lw=e |4

A program is an expression (not a sequence of statements)

It evaluates to a value (it does not perform actions)

o
(\x -> x) apple -- =~> gpple
o Haskell:
(\X -> X) "apple" —- =~ "Clpple"
(2) Functions

Functions are first-class values:

e canbe passed as arguments to other functions
e can be returned as results from other functions
 canbe partially applied (arguments passed one at a time)

(\x => (\y ->x (x¥))) (\z ->z+1)0 --=~>722?

But: unlike A-calculus, not everything is a function!

(3) Top-level bindings

Like in Elsa, we can name terms to use them later

Elsa:

let T =\xy -> X
let F =\xy ->y
let PAIR = \x y -> \b -> ITEb x y
let FST =\p ->p T
let S\D =\p ->pF
eval fst:
FST (PAIR apple orange)
=~> apple
Haskell:

haskellIsAwesome = True

pair = \x y -> \b -> if b then x else y
fst = \p -> p haskellIsAwesome

snd = \p -> p False

-- In GHCi:
> fst (pair "apple

orange") -- "apple”
The names are called top-level variables

Their definitions are called top-level bindings

Better Syntax: Equations and Patterns

You can define function bindings using equations:

pair x y b = 1f b then x else y -- same as: pair = \x y b -> ...
fst p = p True -- same as: fst = \p -> ...
snd p = p False -- same as: snd = \p -> ...

A single function binding can have multiple equations with different patterns of parameters:

pair x y True = x -- If 3rd arg matches True,
-- use this equation;

pair x y False =y -- Otherwise, if 3rd arg matches False,

-- use this equation.
At run time, the first equation whose pattern matches the actual arguments is chosen
For now, a pattern is:
e avariable (matches any value)

e or avalue (matches only that value)

Same as:

pair x y True X -- If 3rd arg matches True,

-- use this equation;

pair x y b =y -- Otherwise, use this equation.
Same as:

pair x y True = x

pair x y _ =y

QUIZ

Which of the following definitions of pair isincorrect?

Lé\.pairxyz\b ->ifbthen@
ﬁS.pairx:\yb->ifbthenxelsey x /
AN——

C.

pair x _ True = x~
pair _ vy _ =

D.

pair x y b = X
pair x y False =y

. all of the above

Equations with guards

An equation can have multiple guards (Boolean expressions):

cmpSquare xy | x > y*y = '"bigger :)"
| x == y*y = "same :|"
| x <y*y = "smaller :("
Same as:
cmpSquare xy | x > y*y = "bigger :)"
| x == y*y = "same :|"
| otherwise = "smaller :("

Recusion

Recursion is built-in, so you can write:

sum n = if n ==
then 0
else n + sum (n - 1)

Or you can write:
sum 0 = 0
sumn=n+ sum (n - 1)

The scope of variables

Top-level variable have global scope, so you can write:

message = if haskellIsAwesome -- this var defined below
then "I love CSE 130"
else "I'm dropping CSE 130"

—
haskellIsAwesome = True @ IﬂPe Err

(£3) ombal k7 True
Or you can write: @ Fq[‘é-é’.

-- What does f _compute? @ IV\ ﬁ‘n"_'[_e LU'Dfl

fo="True 's_evew

fn=g(n - 1) -- mutual recursion! f

g 0 = False [~§-odoé

gn=°Ff (n - 1) -- mutual recursion! L"’ 9 2~

0
L 2&5{

Is this allowed?

haskellIsAwesome = True

haskellIsAwesome = False -- changed my mind

Local variables

You can introduce a new (local) scope using a let -expression:

sum @ = 0
sumn =Tletn' =n -1
in n + sum n' -- the scope of n' is the term after in

Syntactic sugar for nested let -expressions:

sum 0 = 0

sum n = let
n' =n -1
sum' = sum n'

in n + sum

If you need a variable whose scope is an equation, use the where clause instead:

cmpSquare xy | x>z = "bigger :)"
| x == = "same :|"
| x <z = "smaller :("

where z = y*y

Types

What would Elsa say?

let WEIRDO = ONE ZERO

What would Python say?

def weirdo():
return 0(1)

What would Java say?

void weirdo() {
int zero;
zero(1);

In Haskell every expression either has a type or is ill-typed and rejected statically (at compile-time, before
execution starts)

e like in Java

 unlike A-calculus or Python

weirdo = 1 0 -- rejected by GHC

