

Types

In Haskell every expression either

ill-typed and rejected at compile time or

has a type and can be evaluated to obtain _ a value of the same type.

TRINITY
stuffyou write

Int
123 Bool

char

Ill-typed* expressions are rejected statically at compile-time, before execution starts

like in Java

unlike λ-calculus or Python …

weirdo = 1 0 -- rejected by GHC

Why are types good?
Helps with program design

Types are contracts (ignore ill-typed inputs!)

Catches errors early

Allows compiler to generate code

Enables compiler optimizations

Mi5 e'IE
je mmypy Tf ft

Lise Python TS Ruby PHPReclet
zooo 2010

make junkvalues
not representable

Type annotations
You can annotate your bindings with their types using :: , like so:

-- | This is a Boolean:

haskellIsAwesome :: Bool

haskellIsAwesome = True

-- | This is a string

message :: String

message = if haskellIsAwesome

 then "I love CSE 130"

 else "I'm dropping CSE 130"

-- | This is a word-size integer

rating :: Int

rating = if haskellIsAwesome then 10 else 0

-- | This is an arbitrary precision integer

bigNumber :: Integer

bigNumber = factorial 100

If you omit annotations, GHC will infer them for you

Inspect types in GHCi using :t

You should annotate all top-level bindings anyway! (Why?)

Function Types
Functions have arrow types:

\x -> e has type A -> B

if e has type B assuming x has type A

For example:

> :t (\x -> if x then `a` else `b`) -- ???

Always annotate your function bindings
First understand what the function does

Before you think about how to do it

sum :: Int -> Int

sum 0 = 0

sum n = n + sum (n - 1)

When you have *multiple arguments
For example

add3 :: Int -> (Int -> (Int -> Int))

add3 x y z = x + y + z

why? because the above is the same as:

add3 :: Int -> (Int -> (Int -> Int))

add3 = \x -> (\y -> (\z -> x + y + z))

however, as with the lambdas, the -> associates to the right so we will just write:

add3 :: Int -> Int -> Int -> Int

add3 x y z = x + y + z

t Ix y callx86
inst toaddxy

Lists
A list is

either an empty list

[] -- pronounced "nil"

or a head element attached to a tail list

x:xs -- pronounced "x cons xs"

Examples:

the T

Int to Bool

List T

[] -- A list with zero elements

1 : [] -- A list with one element: 1

(:) 1 [] -- As above: for any infix op, `x op y` is same as `(op) x y`

1:(2:(3:(4:[]))) -- A list with four elements: 1, 2, 3, 4

1:2:3:4:[] -- Same thing (: is right associative)

[1,2,3,4] -- Same thing (syntactic sugar)

Terminology: constructors and values
[] and (:) are called the list constructors

We’ve seen constructors before:

True and False are Bool constructors

0 , 1 , 2 are … well, you can think of them as Int constructors

The Int constructors don’t take any parameters, we just called them values

In general, a value is a constructor applied to other values

examples above are list values

The Type of a List
A list has type [Thing] if each of its elements has type Thing

Examples:

intList :: [Int]

intList = [1,2,3,4]

boolList :: [Bool]

boolList = [True, False, True]

strList :: [String]

strList = ["nom", "nom", "burp"]

Lets write some Functions
A Recipe (https://www.htdp.org/)

Step 1: Write some tests

Step 2: Write the type

Step 3: Write the code

Functions on lists: range
1. Tests

-- >>> ???

2. Type

range :: ???

3. Code

range = ???

Syntactic Sugar for Ranges
There’s also syntactic sugar for this!

[1..7] -- [1,2,3,4,5,6,7]

[1,3..7] -- [1,3,5,7]

lo hi

Functions on lists: length
1. Tests

-- >>> ???

2. Type

len :: ???

3. Code

len = ???

Pattern matching on lists
-- | Length of the list

len :: [Int] -> Int

len [] = 0

len (_:xs) = 1 + len xs

A pattern is either a variable (incl. _) or a value

A pattern is

either a variable (incl. _)

or a constructor applied to other patterns

Pattern matching attempts to match values against patterns and, if desired, bind variables to successful matches.

Functions on lists: take
Let’s write a function to take �rst n elements of a list xs .

1. Tests

-- >>> ???

2. Type

take :: ???

3. Code

take = ???

QUIZ

Which of the following is not a pattern?

A. (1:xs)

B. (_:_:_)

C. [x]

D. [1+2,x,y]

E. all of the above

Strings are Lists-of-Chars
For example

λ> let x = ['h', 'e', 'l', 'l', 'o']

λ> x

"hello"

λ> let y = "hello"

λ> x == y

True

λ> :t x

x :: [Char]

λ> :t y

y :: [Char]

shout Shout SHOUT
How can we convert a string to upper-case, e.g.

ghci> shout "like this"

"LIKE THIS"

shout :: String -> String

shout s = ???

Some useful library functions
-- | Length of the list

length :: [t] -> Int

-- | Append two lists

(++) :: [t] -> [t] -> [t]

-- | Are two lists equal?

(==) :: [t] -> [t] -> Bool

You can search for library functions on Hoogle (https://www.haskell.org/hoogle/)!

Tuples
myPair :: (String, Int) -- pair of String and Int

myPair = ("apple", 3)

(,) is the pair constructor

Field access
Using fst and snd

ghci> fst ("apple", 22)

"apple"

ghci> snd ("apple", 22)

22

Tuples to pass parameters
add2 :: (Int, Int) -> Int

add2 p = fst p + snd p

but watch out, add2 expects a tuple.

exAdd2_BAD = add2 10 20 -- type error

exAdd2_OK = add2 (10, 20) -- OK!

Tuples and Pattern Matching
It is often clearer to use patterns for tuples, e.g.

add2 :: (Int, Int) -> Int

add2 p = let (x, y) = p in

 x + y

or equivalently,

add2 :: (Int, Int) -> Int

add2 p = x + y

 where

 (x, y) = p

or, best, use the pattern in the parameter,

add2 :: (Int, Int) -> Int

add2 (x, y) = x + y

You can use pattern matching not only in equations, but also in λ-bindings and let -bindings!

QUIZ: Pattern matching with pairs
Is this pattern matching correct? What does this function do?

quiz :: String -> [(String, Int)] -> Int

quiz _ [] = 0

quiz x ((k,v) : ps)

 | x == k = v

 | otherwise = quiz x ps

What is quiz "dog" [("cat", 10), ("dog", 20), ("cat", 30)] ?

A. Type error!

B. 0

C. 10

D. 20

D. 30

Generalized Tuples
Can we implement triples like in λ-calculus?

Sure! but Haskell has native support for n-tuples:

myPair :: (String, Int)

myPair = ("apple", 3)

myTriple :: (Bool, Int, [Int])

myTriple = (True, 1, [1,2,3])

my4tuple :: (Float, Float, Float, Float)

my4tuple = (pi, sin pi, cos pi, sqrt 2)

The “Empty” Tuple
It also makes sense to have an 0-ary tuple:

myUnit :: ()

myUnit = ()

often used like void in other languages.

List comprehensions
A convenient way to construct lists!

QUIZ
What is the result of evaluating:

quiz = [10 * i | i <- [0,1,2,3,4,5]]

A. In�nite loop B. [] C. [0, 10, 20, 30, 40, 50] D. 150 E. Type error

Comprehensions and Ranges
Recall you can enumerate ranges as

ghci> [0..5]

[0,1,2,3,4,5]

So, we can write the above more simply

quiz = [10 * i | i <- [0..5]]

QUIZ: Composing Comprehensions
What is the result of evaluating

quiz = [(i,j) | i <- [0, 1] -- a first selection

 , j <- [0, 1]] -- a second selection

A. Type error B. [] C. [0,1] D. [(0,0), (1,1)] E. [(0,0), (0,1, (1,0), (1,1)]

QUIZ: Composing Comprehensions
What is the result of evaluating

quiz = [(i,j) | i <- [0, 1]

 , j <- [0, 1]

 , i == j] -- condition!

A. Type error B. [] C. [0,1] D. [(0,0), (1,1)] E. [(0,0), (0,1, (1,0), (1,1)]

shout revisited
How can we convert a string to upper-case, e.g.

ghci> shout "like this"

"LIKE THIS"

Use comprehensions to write a *non-recursive" shout ?

shout :: String -> String

shout s = ???

QuickSort in Haskell

Step 1: Write some tests

-- >>> sort []

-- ???

-- >>> sort [10]

-- ???

-- >>> sort [12, 1, 10]

-- ???

Step 2: Write the type

sort :: ???

Step 3: Write the code

sort [] = ???

sort (x:xs) = ???

sort :: [Int] -> [Int]

sort [] = []

sort (x:xs) = sort ls ++ [x] ++ sort rs

 where

 ls = [l | l <- xs, l <= x]

 rs = [r | r <- xs, x < r]

Haskell is purely functional
Functional = functions are �rst-class values

Pure = a program is an expression that evaluates to a value

no side e�ects!

unlike in Python, Java, etc:

public int f(int x) {

 calls++; // side effect: global variable update!

 System.out.println("calling f"); // side effect: writing to screen!

 launchMissile(); // side effect: can't bring back home!

 return x * 2;

}

in Haskell, a function of type Int -> Int Computes a single integer output from a single integer input Does

nothing else

Referential transparency: The same expression always evaluates to the same value

Why is this good?

easier to reason about (remember x++ vs ++x in C++?)

enables compiler optimizations

especially great for parallelization (e1 + e2 : we can always compute e1 and e2 in parallel!)

QUIZ
The function head returns the �rst element of a list.

What is the result of:

goBabyGo :: Int -> [Int]

goBabyGo n = n : goBabyGo (n + 1)

quiz :: Int

quiz = head (goBabyGo 0)

A. Loops forever B. Type error C. 0 D. 1

Haskell is Lazy
An expression is evaluated only when its result is needed!

ghci> take 2 (goBabyGo 1)

[1,2]

Why?

 take 2 (goBabyGo 1)

=> take 2 (1 : goBabyGo 2)

=> take 2 (1 : 2 : goBabyGo 3)

=> 1: take 1 (2 : goBabyGo 3)

=> 1:2: take 0 (goBabyGo 3)

=> 1:2: []

Why is this good?

can implement cool stu� like in�nite lists: [1..]

-- first n pairs of co-primes:

take n [(i,j) | i <- [1..],

 j <- [1..i],

 gcd i j == 1]

encourages simple, general solutions

but has its problems too :(

That’s all folks!

(https://ucsd-cse130.github.io/sp19/feed.xml) (https://twitter.com/ranjitjhala)

(https://plus.google.com/u/0/104385825850161331469) (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher (http://lucumr.pocoo.org),

suggest improvements here (https://github.com/ucsd-progsys/liquidhaskell-blog/).

