
 

 

 

 

 

 

 

Types

In Haskell every expression either

ill-typed and rejected at compile time or

has a type and can be evaluated to obtain _ a value of the same type.

 

TRINITY
stuffyou write

Int
123 Bool

char



Ill-typed* expressions are rejected statically at compile-time, before execution starts

like in Java

unlike λ-calculus or Python …

weirdo = 1 0     -- rejected by GHC

 

 

 

 

 

 

 

 

Why are types good?
Helps with program design

Types are contracts (ignore ill-typed inputs!)

Catches errors early

Allows compiler to generate code

Enables compiler optimizations
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Type annotations
You can annotate your bindings with their types using :: , like so:



-- | This is a Boolean: 

haskellIsAwesome :: Bool             

haskellIsAwesome = True 

 

-- | This is a string 

message :: String 

message = if haskellIsAwesome 

            then "I love CSE 130" 

            else "I'm dropping CSE 130" 

             

-- | This is a word-size integer 

rating :: Int 

rating = if haskellIsAwesome then 10 else 0 

 

-- | This is an arbitrary precision integer 

bigNumber :: Integer 

bigNumber = factorial 100

If you omit annotations, GHC will infer them for you

Inspect types in GHCi using :t

You should annotate all top-level bindings anyway! (Why?)

 

 

 



 

 

 

Function Types
Functions have arrow types:

\x -> e  has type A -> B

if e  has type B  assuming x  has type A

For example:

> :t (\x -> if x then `a` else `b`)  -- ???

 

 

 

 

Always annotate your function bindings
First understand what the function does

Before you think about how to do it



sum :: Int -> Int 

sum 0 = 0 

sum n = n + sum (n - 1)

 

 

 

 

When you have *multiple arguments
For example

add3 :: Int -> (Int -> (Int -> Int)) 

add3 x y z = x + y + z

why? because the above is the same as:

add3 :: Int -> (Int -> (Int -> Int)) 

add3 = \x -> (\y -> (\z -> x + y + z))

however, as with the lambdas, the ->  associates to the right so we will just write:

add3 :: Int -> Int -> Int -> Int 

add3 x y z = x + y + z

t Ix y callx86
inst toaddxy



 

 

 

 

 

 

Lists
A list is

either an empty list

[] -- pronounced "nil"

or a head element attached to a tail list

x:xs -- pronounced "x cons xs"

 

 

Examples:

the T

Int to Bool

List T



[]                -- A list with zero elements 

 

1 : []            -- A list with one element: 1 

 

(:) 1 []          -- As above: for any infix op, `x op y` is same as `(op) x y` 

 

1:(2:(3:(4:[])))  -- A list with four elements: 1, 2, 3, 4 

 

1:2:3:4:[]        -- Same thing (: is right associative) 

 

[1,2,3,4]         -- Same thing (syntactic sugar)

 

 

 

 

Terminology: constructors and values
[]  and (:)  are called the list constructors

We’ve seen constructors before:

True  and False  are Bool  constructors

0 , 1 , 2  are … well, you can think of them as Int  constructors



The Int  constructors don’t take any parameters, we just called them values

In general, a value is a constructor applied to other values

examples above are list values

 

 

 

 

 

 

 

 

The Type of a List
A list has type [Thing]  if each of its elements has type Thing

Examples:



intList :: [Int] 

intList = [1,2,3,4] 

 

boolList :: [Bool] 

boolList = [True, False, True] 

 

strList :: [String] 

strList = ["nom", "nom", "burp"]

 

 

 

 

 

 

Lets write some Functions
A Recipe (https://www.htdp.org/)

Step 1: Write some tests

Step 2: Write the type

Step 3: Write the code



Functions on lists: range
1. Tests

-- >>> ???

2. Type

range :: ???

3. Code

range = ???

 

 

 

 

 

Syntactic Sugar for Ranges
There’s also syntactic sugar for this!

[1..7]    -- [1,2,3,4,5,6,7] 

[1,3..7]  -- [1,3,5,7]

lo hi



 

 

 

 

 

 

 

 

Functions on lists: length
1. Tests

-- >>> ???

2. Type

len :: ???

3. Code

len = ???

 

 

 

 



 

 

 

 

 

 

Pattern matching on lists
-- | Length of the list 

len :: [Int] -> Int 

len []     = 0 

len (_:xs) = 1 + len xs

 

 

A pattern is either a variable (incl. _ ) or a value

A pattern is

either a variable (incl. _ )

or a constructor applied to other patterns

 

 



Pattern matching attempts to match values against patterns and, if desired, bind variables to successful matches.

 

 

 

 

 

 

Functions on lists: take
Let’s write a function to take  �rst n  elements of a list xs .

1. Tests

-- >>> ???

2. Type

take :: ???

3. Code

take = ???

QUIZ



Which of the following is not a pattern?

A. (1:xs)

B. (_:_:_)

C. [x]

D. [1+2,x,y]

E. all of the above

 

 

 

 

 

 

Strings are Lists-of-Chars
For example



λ> let x = ['h', 'e', 'l', 'l', 'o'] 

λ> x 

"hello" 

 

λ> let y = "hello" 

 

λ> x == y 

True 

 

λ> :t x 

x :: [Char] 

 

λ> :t y 

y :: [Char]

shout Shout SHOUT
How can we convert a string to upper-case, e.g.

ghci> shout "like this" 

"LIKE THIS"

shout :: String -> String 

shout s = ???

 



Some useful library functions
-- | Length of the list 

length :: [t] -> Int 

 

-- | Append two lists 

(++) :: [t] -> [t] -> [t] 

 

-- | Are two lists equal? 

(==) :: [t] -> [t] -> Bool

 

You can search for library functions on Hoogle (https://www.haskell.org/hoogle/)!

 

 

 

 

 

 

Tuples
myPair :: (String, Int)  -- pair of String and Int 

myPair = ("apple", 3)



 

(,)  is the pair constructor

 

 

Field access
Using fst  and snd

ghci> fst ("apple", 22) 

"apple" 

 

ghci> snd ("apple", 22) 

22

Tuples to pass parameters
add2 :: (Int, Int) -> Int 

add2 p = fst p + snd p

but watch out, add2  expects a tuple.



exAdd2_BAD = add2 10 20      -- type error 

 

exAdd2_OK  = add2 (10, 20)   -- OK!

Tuples and Pattern Matching
It is often clearer to use patterns for tuples, e.g.

add2 :: (Int, Int) -> Int 

add2 p = let (x, y) = p in 

           x + y

or equivalently,

add2 :: (Int, Int) -> Int 

add2 p    = x + y 

  where 

   (x, y) = p

or, best, use the pattern in the parameter,

add2 :: (Int, Int) -> Int 

add2 (x, y) = x + y

 

 



You can use pattern matching not only in equations, but also in λ-bindings and let -bindings!

 

 

 

 

 

QUIZ: Pattern matching with pairs
Is this pattern matching correct? What does this function do?

quiz :: String -> [(String, Int)] -> Int 

quiz _ []     = 0 

quiz x ((k,v) : ps) 

  | x == k    = v 

  | otherwise = quiz x ps

What is quiz "dog" [ ("cat", 10), ("dog", 20), ("cat", 30)]  ?

A. Type error!

B. 0

C. 10

D. 20



D. 30

 

 

 

 

 

 

 

Generalized Tuples
Can we implement triples like in λ-calculus?

 

 

 

 

Sure! but Haskell has native support for n-tuples:



myPair   :: (String, Int) 

myPair   = ("apple", 3) 

 

myTriple :: (Bool, Int, [Int]) 

myTriple = (True, 1, [1,2,3]) 

 

my4tuple :: (Float, Float, Float, Float) 

my4tuple = (pi, sin pi, cos pi, sqrt 2)

The “Empty” Tuple
It also makes sense to have an 0-ary tuple:

myUnit :: () 

myUnit = ()

often used like void  in other languages.

 

 

 

 

 

 



List comprehensions
A convenient way to construct lists!

QUIZ
What is the result of evaluating:

quiz = [ 10 * i | i <- [0,1,2,3,4,5]]

A. In�nite loop B. []  C. [0, 10, 20, 30, 40, 50]  D. 150  E. Type error

 

 

 

 

 

Comprehensions and Ranges
Recall you can enumerate ranges as

ghci> [0..5] 

[0,1,2,3,4,5]

So, we can write the above more simply



quiz = [ 10 * i | i <- [0..5] ]

QUIZ: Composing Comprehensions
What is the result of evaluating

quiz = [(i,j) | i <- [0, 1]     -- a first selection 

              , j <- [0, 1] ]   -- a second selection

A. Type error B. []  C. [0,1]  D. [(0,0), (1,1)]  E. [(0,0), (0,1, (1,0), (1,1)]

 

 

 

 

 

QUIZ: Composing Comprehensions
What is the result of evaluating

quiz = [(i,j) | i <- [0, 1] 

              , j <- [0, 1] 

              , i == j      ]   -- condition!

A. Type error B. []  C. [0,1]  D. [(0,0), (1,1)]  E. [(0,0), (0,1, (1,0), (1,1)]



 

 

 

 

 

 

shout revisited
How can we convert a string to upper-case, e.g.

ghci> shout "like this" 

"LIKE THIS"

Use comprehensions to write a *non-recursive" shout ?

shout :: String -> String 

shout s = ???

 

 

 

 

 

QuickSort in Haskell



Step 1: Write some tests

-- >>> sort [] 

-- ??? 

 

-- >>> sort [10] 

-- ??? 

 

-- >>> sort [12, 1, 10] 

-- ???

Step 2: Write the type

sort :: ???

Step 3: Write the code

sort []     = ??? 

sort (x:xs) = ???

sort :: [Int] -> [Int] 

sort []     = [] 

sort (x:xs) = sort ls ++ [x] ++ sort rs 

  where 

    ls      = [ l | l <- xs, l <= x ] 

    rs      = [ r | r <- xs, x <  r ]



 

 

 

 

 

 

Haskell is purely functional
Functional = functions are �rst-class values

Pure = a program is an expression that evaluates to a value

no side e�ects!

unlike in Python, Java, etc:

public int f(int x) { 

  calls++;                         // side effect: global variable update! 

  System.out.println("calling f"); // side effect: writing to screen! 

  launchMissile();                 // side effect: can't bring back home! 

  return x * 2; 

}

in Haskell, a function of type Int -> Int  Computes a single integer output from a single integer input Does

nothing else



Referential transparency: The same expression always evaluates to the same value

 

Why is this good?

easier to reason about (remember x++  vs ++x  in C++?)

enables compiler optimizations

especially great for parallelization ( e1 + e2 : we can always compute e1  and e2  in parallel!)

 

 

 

 

 

 

QUIZ
The function head  returns the �rst element of a list.

What is the result of:



goBabyGo :: Int -> [Int] 

goBabyGo n = n : goBabyGo (n + 1) 

 

quiz :: Int 

quiz = head (goBabyGo 0)

A. Loops forever B. Type error C. 0  D. 1

Haskell is Lazy
An expression is evaluated only when its result is needed!

ghci> take 2 (goBabyGo 1) 

[1,2]

Why?

 

 

        take 2 (goBabyGo 1) 

=>      take 2 (1 : goBabyGo 2) 

=>      take 2 (1 : 2 : goBabyGo 3) 

=> 1:   take 1 (    2 : goBabyGo 3) 

=> 1:2: take 0 (        goBabyGo 3) 

=> 1:2: []



 

Why is this good?

can implement cool stu� like in�nite lists: [1..]

-- first n pairs of co-primes:  

take n [(i,j) | i <- [1..], 

                j <- [1..i], 

                gcd i j == 1]

encourages simple, general solutions

but has its problems too :(

 

 

 

 

 

That’s all folks!

(https://ucsd-cse130.github.io/sp19/feed.xml)  (https://twitter.com/ranjitjhala)

(https://plus.google.com/u/0/104385825850161331469)  (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher (http://lucumr.pocoo.org),

suggest improvements here (https://github.com/ucsd-progsys/liquidhaskell-blog/).




