Types TRIN [TY

:\’SN# Yow vate

run -time

Expresscon —> | Value

w pile-time /
Int
Type

R:S : Poo

Chayr
In Haskell every expression either

o ill-typed and rejected at compile time or
» has a type and can be evaluated to obtain __a value of the same type.

Ill1-typed* expressions are rejected statically at compile-time, before execution starts

¢ like in Java
o unlike A-calculus or Python ...

weirdo = 1 0 -- rejected by GHC
wewstt £ 'FG'

mgey N[0}

et e Pytton, TS, Ruby,prp
\—/W\/
Why are types good? zsa0—2010

Helps with program design

Types are contracts (ignore ill-typed inputs!)
Catches errors early v
Allows compiler to generate code

Enables compiler optimizations

Make [unk valuen
Yot fepretentabl

Type annotations

You can annotate your bindings with their types using :: , like so:

-- | This i1s a Boolean:
haskellIsAwesome :: Bool
haskellIsAwesome = True

-- | This is a string
message :: String
message = if haskellIsAwesome
then "I love CSE 130"
else "I'm dropping CSE 130"

-- | This i1s a word-size integer

rating :: Int
rating = if haskellIsAwesome then 10 else 0

-- | This is an arbitrary precision integer

bigNumber :: Integer
bigNumber = factorial 100

If you omit annotations, GHC will infer them for you

 Inspect types in GHCi using :t
 You should annotate all top-level bindings anyway! (Why?)

Function Types
Functions have arrow types:

e \x -> e hastype A -> B
e if e hastype B assuming x has type A

For example:

> :t (\x -> if x then "a’ else 'b") -- 2?2

Always annotate your function bindings

First understand what the function does

e Before you think about how to do it

sum :: Int -> Int
sum 0 = 0
sumn=n+ sum (n - 1)

When you have *multiple arguments

For example

add3 :: Int -> (Int -> (Int -> Int))
add3 x y z=x+y + z

why? because the above is the same as:

add3 :: Int -> (Int -> (Int -> Int))
add3 = \x -> (\y -> (\z ->x +y + 2))

however, as with the lambdas, the -> associates to the right so we will just write:

add3 :: Int -> Int -> Int -> Int
add3 x yz=x+y + z

ét - éz >(ts = ﬂ))

In-[— == Bool

List T
Lists I>
Alistis

o either an empty list
[1 -- pronounced "nil”

o or a head element attached to a tail list

X:Xs -- pronounced "x cons xs"

Examples:

[] -- A list with zero elements

1:[] -- A list with one element: 1

() 11[] -- As above: for any infix op, ‘x op y' is same as ‘(op) x y°
1:(2:(3:(4:[1))) -- A list with four elements: 1, 2, 3, 4

1:2:3:4:[] -- Same thing (: is right associative)

[1,2,3,4] -- Same thing (syntactic sugar)

Terminology: constructors and values
[]1 and (:) are called the list constructors
We've seen constructors before:

e True and False are Bool constructors

e 0,1, 2 are...well, you can think of them as Int constructors

o The Int constructors don’t take any parameters, we just called them values
In general, a value is a constructor applied to other values

o examples above are list values

The Type of a List

Alist has type [Thing] if each of its elements has type Thing

Examples:

intList :: [Int]
intlList = [1,2,3,4]

boolList :: [Bool]
boolList = [True, False, True]

strList :: [String]

strList = ["nom", "nom", "burp"]

Lets write some Functions
A Recipe (https://www.htdp.org/)

Step 1: Write some tests

Step 2: Write the type

Step 3: Write the code

Functions on lists: range

1. Tests [[/ h’

- >>> ?2?2?
2. Type
range :: ?7?2?
3. Code

range = 2727?

Syntactic Sugar for Ranges

There’s also syntactic sugar for this!

[1..7] -- [1,2,3,4,5,6,7]
[1,3..7] -- [1,3,5,7]

Functions on lists: length

1. Tests
- >>> 2?2?22

2. Type

Pattern matching on lists

-- | Length of the list
len :: [Int] -> Int

len [] =0
len (_:xs) = 1 + len xs

: < eitd able-Gnel ;

A pattern is

e either avariable (incl. _)
e or aconstructor applied to other patterns

Pattern matching attempts to match values against patterns and, if desired, bind variables to successful matches.

Functions on lists: take

Let’s write a function to take first n elements of a list xs.

1. Tests
- >>> 2?2
2. Type
take :: 72?2
3. Code

take = ??2?

QUIZ

Which of the following is not a pattern?
A. (1:xs)

B. (_:_:)

C. [x]

D. [1+2,X,y]

E. all of the above

Strings are Lists-of-Chars

For example

A> let x
A> X
"hello"

[lhl’ lel’ l'l'l, l1|, lol]

A> let y = "hello"

)\>X::y
True

A> it ox
X :: [Char]

A> ity
y :: [Char]

shout Shout SHOUT

How can we convert a string to upper-case, e.g.

ghci> shout "like this"
"LIKE THIS"

shout :: String -> String
shout s = 2?2?

Some useful library functions

-- | Length of the list
length :: [t] -> Int

-- | Append two lists
(++) :: [t] -> [t] -> [t]

-- | Are two lists equal?

(==) :: [t] -> [t] -> Bool

You can search for library functions on Hoogle (https://www.haskell.org/hoogle/)!

Tuples

myPair :: (String, Int) -- pair of String and Int
myPair = ("apple", 3)

(,) isthe pair constructor

Field access

Using fst and snd

ghci> fst ("apple", 22)
llapp'l-ell

ghci> snd ("apple", 22)
22
Tuples to pass parameters

add2 :: (Int, Int) -> Int
add2 p = fst p + snd p

but watch out, add2 expects a tuple.

exAdd2_BAD

add2 10 20 -- type error

exAdd2_0K add2 (10, 20) -- OK!

Tuples and Pattern Matding

It is often clearer to use patterns for tuples, e.g.

Int
p in

add2 :: (Int, Int) -
add2 p = let (x, vy)
X +y

\%

or equivalently,

add2 :: (Int, Int) -> Int

add2 p =X +y

\

where
(x, y)

P

or, best, use the pattern in the parameter,

add2 :: (Int, Int) -> Int
add2 (x, y) =x +y

You can use pattern matching not only in equations, but also in 1-bindings and let -bindings!

QUIZ: Pattern matdhing with pairs

Is this pattern matching correct? What does this function do?

quiz :: String -> [(String, Int)] -> Int
quiz _ [] =0
quiz x ((k,v) : ps)

| x == =V

| otherwise = quiz x ps

What is quiz "dog" [("cat", 10), ("dog", 20), ("cat", 30)]?
A. Type error!

B. 0

C. 10

D. 20

D. 30

Generalized Tuples

Can we implement triples like in A-calculus?

Sure! but Haskell has native support for n-tuples:

myPair
myPair

myTriple
myTriple

my4tuple
my4tuple

:: (String, Int)
= ("apple", 3)

:: (Bool, Int, [Int])
(True, 1, [1,2,3])

:: (Float, Float, Float, Float)
(pi, sin pi, cos pi, sqrt 2)

The "Empty” Tuple

It also makes sense to have an 0-ary tuple:

myUnit :
myUnit =

Q)
O

often used like void in other languages.

List comprehensions

A convenient way to construct lists!

QUIZ

What is the result of evaluating:
quiz=[10 * 1 | 1 <- [0,1,2,3,4,5]]

A. InfiniteloopB. [] C. [0, 10, 20, 30, 40, 50] D. 150 E. Type error

Comprehensions and Ranges

Recall you can enumerate ranges as

ghci> [0..5]
[0,1,2,3,4,5]

So, we can write the above more simply

quiz = [10 * 1 | 1 <- [0..5]]

QUIZ: Composing Comprehensions

What is the result of evaluating

quiz = [(1,3) | 1 <- [0, 1] -- a first selection
, J<- 1[0, 1]] -- a second selection

A.TypeerrorB. [] C. [6,1] D. [(6,0), (1,1)] E. [(0,0), (0,1, (1,0), (1,1)]

QUIZ: Composing Comprehensions

What is the result of evaluating

quiz = [(1,3) | 1 <- [0, 1]
’ J <- [0: 1]
, L ==] -- condition!

A.TypeerrorB. [] C. [6,1] D. [(6,0), (1,1)] E. [(0,0), (0,1, (1,0), (1,1)]

shout revisited

How can we convert a Stl‘il’lg to upper-case, e.g.

ghci> shout "like this"
"LIKE THIS"

Use comprehensions to write a *non-recursive" shout ?

shout :: String -> String
shout s = 22?

QuickSort in Haskell

Step 1: Write some tests

-- >>> sort []
222

-- >>> sort [10]
- 722

-- >>> sort [12, 1, 10]
222

Step 2: Write the type
sort :: ???
Step 3: Write the code

sort [] =277

sort (x:xs) = 222

sort :: [Int] -> [Int]
sort [] []

sort (x:xs) = sort ls ++ [x] ++ sort rs

where
1s =[1] 1<-xs, 1 <=x]
rs =[r | r<-xs, x< r]

Haskell is purely functional

Functional = functions are first-class values

Pure = a program is an expression that evaluates to a value
e no side effects!

 unlike in Python, Java, etc:

public int f(int x) {

calls++; // side effect: global variable update!
System.out.println("calling f"); // side effect: writing to screen!
launchMissile(); // side effect: can't bring back home!
return x * 2;

}

o in Haskell, a function of type Int -> Int Computes a single integer output from a single integer input Does
nothing else

Referential transparency: The same expression always evaluates to the same value

Why is this good?

e easier to reason about (remember x++ vs ++x in C++?)
 enables compiler optimizations
o especially great for parallelization (el + e2:we can always compute el and e2 in parallel!)

QUIZ

The function head returns the first element of a list.

What is the result of:

goBabyGo :: Int -> [Int]
goBabyGo n = n : goBabyGo (n + 1)

quiz :: Int
quiz = head (goBabyGo 0)

A. Loops forever B. Type error C. 0 D. 1

Haskell is Lazy

An expression is evaluated only when its result is needed!

ghci> take 2 (goBabyGo 1)

[1,2]
Why?

take 2 (goBabyGo 1)
=> take 2 (1 : goBabyGo 2)
=> take 2 (1 : 2 : goBabyGo 3)
= 1: take 1 (2 : goBabyGo 3)
=> 1:2: take 0 (goBabyGo 3)

=> 1:2: []

Why is this good?
 can implement cool stuff like infinite lists: [1..]

-- first n pairs of co-primes:
take n [(1,3) | 1 <- [1..],
j o<- [1..1],
gcd 1 j == 1]

 encourages simple, general solutions

 but has its problems too :(

That’s all folks!

(https://ucsd-cse130.github.io/sp19/feed.xml) (https://twitter.com/ranjitjhala)
(https://plus.google.com/u/0/104385825850161331469) (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher (http://lucumr.pocoo.org),
suggest improvements here (https://github.com/ucsd-progsys/liquidhaskell-blog/).

