2. **Sum types** (one-of): a value of T contains a value of T1 or a value of T2 [done]
 - Union (sum) of two sets: \(v(T) = v(T_1) \cup v(T_2) \)

3. **Recursive types**: a value of T contains a sub-value of the same type T

Recursive types

Let’s define **natural numbers** from scratch:

```haskell
data Nat = ???
```
data Nat = Zero | Succ Nat

A Nat value is:

- either an empty box labeled Zero
- or a box labeled Succ with another Nat in it!

Some Nat values:

Zero -- 0
Succ Zero -- 1
Succ (Succ Zero) -- 2
Succ (Succ (Succ Zero)) -- 3
...

\[m + n + 1\]
Functions on recursive types

Recursive code mirrors recursive data

1. Recursive type as a parameter

```haskell
data Nat = Zero -- base constructor
           | Succ Nat -- inductive constructor
```

Step 1: add a pattern per constructor

```haskell
toInt :: Nat -> Int
toInt Zero     = ... -- base case
toInt (Succ n) = ... -- inductive case
                -- (recursive call goes here)
```

Step 2: fill in base case:

```haskell
toInt :: Nat -> Int
toInt Zero     = 0   -- base case
toInt (Succ n) = ... -- inductive case
                -- (recursive call goes here)
```
Step 2: fill in inductive case using a recursive call:

```haskell
toInt :: Nat -> Int
toInt Zero = 0 -- base case
toInt (Succ n) = 1 + toInt n -- inductive case
```

QUIZ

What does this evaluate to?

```haskell
let foo i = if i <= 0 then Zero else Succ (foo (i - 1))
in foo 2
```

A. Syntax error

B. Type error
2. Recursive type as a result
data Nat = Zero -- base constructor
 | Succ Nat -- inductive constructor

fromInt :: Int -> Nat
fromInt n
 | n <= 0 = Zero -- base case
 | otherwise = Succ (fromInt (n - 1)) -- inductive case
 -- (recursive call goes here)

3. Putting the two together
data Nat = Zero -- base constructor
 | Succ Nat -- inductive constructor

add :: Nat -> Nat -> Nat
add n m = ???

sub :: Nat -> Nat -> Nat
sub n m = ???
data Nat = Zero -- base constructor
 | Succ Nat -- inductive constructor

add :: Nat -> Nat -> Nat
add Zero m = m -- base case
add (Succ n) m = Succ (add n m) -- inductive case

sub :: Nat -> Nat -> Nat
sub n Zero = n -- base case 1
sub Zero _ = Zero -- base case 2
sub (Succ n) (Succ m) = sub n m -- inductive case

Lessons learned:

- **Recursive code mirrors recursive data**
- With **multiple** arguments of a recursive type, which one should I recurse on?
- The name of the game is to pick the right **inductive strategy**!
Lists

Lists aren’t built-in! They are an algebraic data type like any other:

```haskell
data List = Nil                      -- base constructor
           | Cons Int List       -- inductive constructor
```

- List [1, 2, 3] is represented as Cons 1 (Cons 2 (Cons 3 Nil))
- Built-in list constructors [] and (:) are just fancy syntax for Nil and Cons

Functions on lists follow the same general strategy:

```haskell
length :: List -> Int
length Nil     = 0                    -- base case
length (Cons _ xs) = 1 + length xs   -- inductive case
```
What is the right *inductive strategy* for appending two lists?

\[
\text{append} :: \text{List} \to \text{List} \to \text{List}
\]

\[
\text{append } x y s = ??
\]

Trees

Lists are *unary trees* with elements stored in the nodes:
data List a = Cons a (List a)
Lists are unary trees

```haskell
data List = Nil | Cons Int List
```

How do we represent *binary trees* with elements stored in the nodes?
Binary trees with data at nodes

```plaintext
data Tree a = Leaf
    | Node a (Tree a) (Tree a)
```
QUIZ: Binary trees I

What is a Haskell datatype for binary trees with elements stored in the nodes?
Binary trees with data at nodes

(A) \textbf{data} Tree = Leaf \mid \text{Node Int Tree} \times
(B) `data Tree = Leaf | Node Tree Tree`

(C) `data Tree = Leaf | Node Int Tree Tree`

(D) `data Tree = Leaf Int | Node Tree Tree`

(E) `data Tree = Leaf Int | Node Int Tree Tree`
Binary trees with data at nodes
data Tree = Leaf | Node Int Tree Tree

t1234 = Node 1
 (Node 2 (Node 3 Leaf Leaf) Leaf)
 (Node 4 Leaf Leaf)

Functions on trees

depth :: Tree -> Int
depth t = ??
QUIZ: Binary trees II

What is a Haskell datatype for binary trees with elements stored in the leaves?
Binary trees with data at leaves

(A) data $\text{Tree} = \text{Leaf}_1 \times \text{Node} \times \text{Int} \times \text{Tree}$
(B) \textbf{data} Tree = \text{Leaf} | \text{Node Tree Tree}

(C) \textbf{data} Tree = \text{Leaf} | \text{Node Int Tree Tree}

(D) \textbf{data} Tree = \text{Leaf Int} | \text{Node Tree Tree}

(E) \textbf{data} Tree = \text{Leaf Int} | \text{Node Int Tree Tree}

\textbf{data} Tree = \text{Leaf Int} | \text{Node Tree Tree}

t12345 = \text{Node}

\hspace{1em} (\text{Node (Node (Leaf 1) (Leaf 2)) (Leaf 3)})
\hspace{1em} (\text{Node (Leaf 4) (Leaf 5)})
Example: Calculator

I want to implement an arithmetic calculator to evaluate expressions like:

- 2.3
- 4.0 + 2.9
- 3.78 - 5.92
- (4.0 + 2.9) * (3.78 - 5.92)

What is a Haskell datatype to represent these expressions?

data Expr =
 ENum Double
 | EPlus Expr Expr
 | EMinus Expr Expr
 | EMul Expr Expr
\textbf{data} \ Expr = \text{Num} \ Float \\
| \ Add \ Expr \ Expr \\
| \ Sub \ Expr \ Expr \\
| \ Mul \ Expr \ Expr \\

How do we write a function to \textit{evaluate} an expression?

\textbf{eval} :: \ Expr \to \ Float \\
\textbf{eval} e = ???
Recursion is...

Building solutions for big problems from solutions for sub-problems

- **Base case**: what is the simplest version of this problem and how do I solve it?
- **Inductive strategy**: how do I break down this problem into sub-problems?
- **Inductive case**: how do I solve the problem given the solutions for subproblems?

Why use Recursion?

1. Often far simpler and cleaner than loops
 - But not always...
2. Structure often forced by recursive data
3. Forces you to factor code into reusable units (recursive functions)
Why *not* use Recursion?

1. Slow
2. Can cause stack overflow

Example: factorial
fac :: Int -> Int
fac n
 | n <= 1 = 1
 | otherwise = n * fac (n - 1)

Let's see how `fac 4` is evaluated:

```
<fac 4>
  ==> <4 * <fac 3>>        -- recursively call `fact 3`
  ==> <4 * <3 * <fac 2>>> -- recursively call `fact 2`
  ==> <4 * <3 * <2 * <fac 1>>> -- recursively call `fact 1`
  ==> <4 * <3 * <2 * 1>>>  -- multiply 2 to result
  ==> <4 * <3 * 2>>>       -- multiply 3 to result
  ==> <4 * 6>              -- multiply 4 to result
  ==> 24
```

Each function call `<>` allocates a frame on the call stack

- expensive
- the stack has a finite size
Can we do recursion without allocating stack frames?

Tail Recursion

Recursive call is the *top-most* sub-expression in the function body

- i.e. no computations allowed on recursively returned value
- i.e. value returned by the recursive call == value returned by function

QUIZ: Is this function tail recursive?
fac :: Int -> Int
fac n
 | n <= 1 = 1
 | otherwise = n * fac (n - 1)

A. Yes
B. No

Tail recursive factorial

Let’s write a tail-recursive factorial!

facTR :: Int -> Int
facTR n = ...
Let's see how facTR is evaluated:

\(<\text{facTR } 4>\)

\(==\) \(<\text{loop } 1 \ 4>\) -- call loop 1 4

\(==\) \(<\text{loop } 4 \ 3>\) -- rec call loop 4 3

\(==\) \(<\text{loop } 12 \ 2>\) -- rec call loop 12 2

\(==\) \(<\text{loop } 24 \ 1>\) -- rec call loop 24 1

\(==\) 24 -- return result 24!

Each recursive call \textbf{directly} returns the result

- without further computation

- no need to remember what to do next!

- no need to store the “empty” stack frames!
Why care about Tail Recursion?

Because the compiler can transform it into a fast loop

```haskell
facTR n = loop 1 n
    where
        loop acc n
            | n <= 1     = acc
            | otherwise  = loop (acc * n) (n - 1)
```

```javascript
function facTR(n){
    var acc = 1;
    while (true) {
        if (n <= 1) { return acc; }
        else { acc = acc * n; n = n - 1; }
    }
}
```

- Tail recursive calls can be optimized as a loop
 - no stack frames needed!
• Part of the language specification of most functional languages
 ▪ compiler **guarantees** to optimize tail calls

That’s all folks!

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher (http://lucumr.pocoo.org),
suggest improvements here (https://github.com/ucsd-progsys/liquidhaskell-blog/).