
2. Sum types (one-of): a value of T contains a value of T1 or a value of T2 [done]

Union (sum) of two sets: v(T) = v(T1) ∪ v(T2)

3. Recursive types: a value of T contains a sub-value of the same type T

Recursive types
Let’s de�ne natural numbers from scratch:

data Nat = ???

each of but Sky

s

q

data Nat = Zero | Succ Nat

A Nat value is:

either an empty box labeled Zero

or a box labeled Succ with another Nat in it!

Some Nat values:

Zero -- 0

Succ Zero -- 1

Succ (Succ Zero) -- 2

Succ (Succ (Succ Zero)) -- 3

...

i y

t.ro a
i

out D

Functions on recursive types
Recursive code mirrors recursive data

1. Recursive type as a parameter
data Nat = Zero -- base constructor

 | Succ Nat -- inductive constructor

Step 1: add a pattern per constructor

toInt :: Nat -> Int

toInt Zero = ... -- base case

toInt (Succ n) = ... -- inductive case

 -- (recursive call goes here)

Step 2: �ll in base case:

toInt :: Nat -> Int

toInt Zero = 0 -- base case

toInt (Succ n) = ... -- inductive case

 -- (recursive call goes here)

B Baa

Zero m zero
m zero m

Step 2: �ll in inductive case using a recursive call:

toInt :: Nat -> Int

toInt Zero = 0 -- base case

toInt (Succ n) = 1 + toInt n -- inductive case

QUIZ
What does this evaluate to?

let foo i = if i <= 0 then Zero else Succ (foo (i - 1))

in foo 2

A. Syntax error

B. Type error

C. 2

D. Succ Zero

E. Succ (Succ Zero)

2. Recursive type as a result

data Nat = Zero -- base constructor

 | Succ Nat -- inductive constructor

fromInt :: Int -> Nat

fromInt n

 | n <= 0 = Zero -- base case

 | otherwise = Succ (fromInt (n - 1)) -- inductive case

 -- (recursive call goes here)

3. Putting the two together

data Nat = Zero -- base constructor

 | Succ Nat -- inductive constructor

add :: Nat -> Nat -> Nat

add n m = ???

sub :: Nat -> Nat -> Nat

sub n m = ???

data Nat = Zero -- base constructor

 | Succ Nat -- inductive constructor

add :: Nat -> Nat -> Nat

add Zero m = m -- base case

add (Succ n) m = Succ (add n m) -- inductive case

sub :: Nat -> Nat -> Nat

sub n Zero = n -- base case 1

sub Zero _ = Zero -- base case 2

sub (Succ n) (Succ m) = sub n m -- inductive case

Lessons learned:

Recursive code mirrors recursive data

With multiple arguments of a recursive type, which one should I recurse on?

The name of the game is to pick the right inductive strategy!

Lists
Lists aren’t built-in! They are an algebraic data type like any other:

data List = Nil -- base constructor

 | Cons Int List -- inductive constructor

List [1, 2, 3] is represented as Cons 1 (Cons 2 (Cons 3 Nil))

Built-in list constructors [] and (:) are just fancy syntax for Nil and Cons

Functions on lists follow the same general strategy:

length :: List -> Int

length Nil = 0 -- base case

length (Cons _ xs) = 1 + length xs -- inductive case

zFis

HF5

What is the right inductive strategy for appending two lists?

append :: List -> List -> List

append xs ys = ??

Trees
Lists are unary trees with elements stored in the nodes:

D
DHFDI

data List a

1 Nil
1 Cons a lista

Lists are unary trees

data List = Nil | Cons Int List

How do we represent binary trees with elements stored in the nodes?

Binary trees with data at nodes

data Tree a

Leaf
1 Node a Tree a Greea

QUIZ: Binary trees I
What is a Haskell datatype for binary trees with elements stored in the nodes?

Binary trees with data at nodes

(A) data Tree = Leaf | Node Int Tree

Node Leaf
3

x d
Tree tree

(B) data Tree = Leaf | Node Tree Tree

(C) data Tree = Leaf | Node Int Tree Tree

(D) data Tree = Leaf Int | Node Tree Tree

(E) data Tree = Leaf Int | Node Int Tree Tree

1
0

0

Binary trees with data at nodes

data Tree = Leaf | Node Int Tree Tree

t1234 = Node 1

 (Node 2 (Node 3 Leaf Leaf) Leaf)

 (Node 4 Leaf Leaf)

Functions on trees
depth :: Tree -> Int

depth t = ??

QUIZ: Binary trees II
What is a Haskell datatype for binary trees with elements stored in the leaves?

Binary trees with data at leaves

(A) data Tree = Leaf | Node Int Tree

3

f
e a

d O O o

D

X X tree

(B) data Tree = Leaf | Node Tree Tree

(C) data Tree = Leaf | Node Int Tree Tree

(D) data Tree = Leaf Int | Node Tree Tree

(E) data Tree = Leaf Int | Node Int Tree Tree

data Tree = Leaf Int | Node Tree Tree

t12345 = Node

 (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))

 (Node (Leaf 4) (Leaf 5))

x
x

leftright
X

Example: Calculator
I want to implement an arithmetic calculator to evaluate expressions like:

4.0 + 2.9

3.78 – 5.92

(4.0 + 2.9) * (3.78 - 5.92)

What is a Haskell datatype to represent these expressions?

data Expr = ???

23 Enum 23
Eplus ENum4o ENum2.9

in

a
ENum Double

iein i i 3

data Expr = Num Float

 | Add Expr Expr

 | Sub Expr Expr

 | Mul Expr Expr

How do we write a function to evaluate an expression?

eval :: Expr -> Float

eval e = ???

Recursion is…
Building solutions for big problems from solutions for sub-problems

Base case: what is the simplest version of this problem and how do I solve it?

Inductive strategy: how do I break down this problem into sub-problems?

Inductive case: how do I solve the problem given the solutions for subproblems?

Why use Recursion?
1. Often far simpler and cleaner than loops

But not always…

2. Structure often forced by recursive data

3. Forces you to factor code into reusable units (recursive functions)

Why not use Recursion?
1. Slow

2. Can cause stack over�ow

Example: factorial

fac :: Int -> Int

fac n

 | n <= 1 = 1

 | otherwise = n * fac (n - 1)

Lets see how fac 4 is evaluated:

<fac 4>

 ==> <4 * <fac 3>> -- recursively call `fact 3`

 ==> <4 * <3 * <fac 2>>> -- recursively call `fact 2`

 ==> <4 * <3 * <2 * <fac 1>>>> -- recursively call `fact 1`

 ==> <4 * <3 * <2 * 1>>> -- multiply 2 to result

 ==> <4 * <3 * 2>> -- multiply 3 to result

 ==> <4 * 6> -- multiply 4 to result

 ==> 24

Each function call <> allocates a frame on the call stack

expensive

the stack has a �nite size

Can we do recursion without allocating stack frames?

Tail Recursion
Recursive call is the top-most sub-expression in the function body

i.e. no computations allowed on recursively returned value

i.e. value returned by the recursive call == value returned by function

QUIZ: Is this function tail recursive?

fac :: Int -> Int

fac n

 | n <= 1 = 1

 | otherwise = n * fac (n - 1)

A. Yes

B. No

Tail recursive factorial
Let’s write a tail-recursive factorial!

facTR :: Int -> Int

facTR n = ...

Lets see how facTR is evaluated:

<facTR 4>

 ==> <<loop 1 4>> -- call loop 1 4

 ==> <<<loop 4 3>>> -- rec call loop 4 3

 ==> <<<<loop 12 2>>>> -- rec call loop 12 2

 ==> <<<<<loop 24 1>>>>> -- rec call loop 24 1

 ==> 24 -- return result 24!

Each recursive call directly returns the result

without further computation

no need to remember what to do next!

no need to store the “empty” stack frames!

Why care about Tail Recursion?
Because the compiler can transform it into a fast loop

facTR n = loop 1 n

 where

 loop acc n

 | n <= 1 = acc

 | otherwise = loop (acc * n) (n - 1)

function facTR(n){

 var acc = 1;

 while (true) {

 if (n <= 1) { return acc ; }

 else { acc = acc * n; n = n - 1; }

 }

}

Tail recursive calls can be optimized as a loop

no stack frames needed!

Part of the language speci�cation of most functional languages

compiler guarantees to optimize tail calls

That’s all folks!

(https://ucsd-cse130.github.io/sp19/feed.xml) (https://twitter.com/ranjitjhala)

(https://plus.google.com/u/0/104385825850161331469) (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher (http://lucumr.pocoo.org),

suggest improvements here (https://github.com/ucsd-progsys/liquidhaskell-blog/).

