
Lexing and Parsing

2018-05-16

Plan for this week

Last week:
▶ How do we evaluate a program given its AST?

eval :: Env -> Expr -> Value

This week:
▶ How do we convert program text into an AST?

parse :: String -> Expr

Example: calculator with variables

AST representation:

data Aexpr
= AConst Int
| AVar Id
| APlus Aexpr Aexpr
| AMinus Aexpr Aexpr
| AMul Aexpr Aexpr
| ADiv Aexpr Aexpr

Example: calculator with variables

Evaluator:

eval :: Env -> Aexpr -> Value
...

Using the evaluator:

�> eval [] (APlus (AConst 2) (AConst 6))
8

�> eval [("x", 16), ("y", 10)]
(AMinus (AVar "x") (AVar "y"))

6

�> eval [("x", 16), ("y", 10)]
(AMinus (AVar "x") (AVar "z"))

*** Exception: Error {errMsg = "Unbound variable z"}

Example: calculator with variables

But writing ASTs explicitly is really tedious, we are used to writing
programs as text!

We want to write a function that converts strings to ASTs if
possible:

parse :: String -> Aexpr

Example: calculator with variables

For example:

�> parse "2 + 6"
APlus (AConst 2) (AConst 6)

�> parse "(x - y) / 2"
ADiv (AMinus (AVar "x") (AVar "y")) (AConst 2)

�> parse "2 +"
*** Exception: Error {errMsg = "Syntax error"}

Two-step-strategy

How do I read a sentence “He ate a bagel”?

Two-step-strategy

How do I read a sentence “He ate a bagel”?
▶ First split into words: ["He", "ate", "a", "bagel"]
▶ Then relate words to each other: “He” is the subject, “ate” is

the verb, etc

Let’s do the same thing to “read” programs!

Step 1 (Lexing) : From String to Tokens

A string is a list of characters:

Figure 1: Characters

First we aggregate characters that “belong together” into tokens
(i.e. the “words” of the program):

Figure 2: Tokens

Step 1 (Lexing) : From String to Tokens

We distinguish tokens of different kinds based on their format:
▶ all numbers: integer constant
▶ alphanumeric, starts with a letter: identifier
▶ +: plus operator
▶ etc

Step 2 (Parsing) : From Tokens to AST

Next, we convert a sequence of tokens into an AST
▶ This is hard…
▶ … but the hard parts do not depend on the language!

Parser generators
▶ Given the description of the token format generates a lexer
▶ Given the description of the grammar generates a parser

We will be using parser generators, so we only care about how to
describe the token format and the grammar

Lexing

We will use the tool called alex to generate the lexer

Input to alex: a .x file that describes the token format

Tokens

First we list the kinds of tokens we have in the language:

data Token
= NUM AlexPosn Int
| ID AlexPosn String
| PLUS AlexPosn
| MINUS AlexPosn
| MUL AlexPosn
| DIV AlexPosn
| LPAREN AlexPosn
| RPAREN AlexPosn
| EOF AlexPosn

Token rules

Next we describe the format of each kind of token using a rule:

[\+] { \p _ -> PLUS p }
[\-] { \p _ -> MINUS p }
[*] { \p _ -> MUL p }
[\/] { \p _ -> DIV p }
\({ \p _ -> LPAREN p }
\) { \p _ -> RPAREN p }
$alpha [$alpha $digit _ \']* { \p s -> ID p s }
$digit+ { \p s -> NUM p (read s) }

Token rules

Each line consists of:
▶ a regular expression that describes which strings should be

recognized as this token
▶ a Haskell expression that generates the token

...
\) { \p _ -> RPAREN p }
$alpha [$alpha $digit _ \']* { \p s -> ID p s }
$digit+ { \p s -> NUM p (read s) }

You read it as:
▶ if at position p in the input string
▶ you encounter a substring s that matches the regular

expression
▶ evaluate the Haskell expression with arguments p and s

Regular Expressions

A regular expression has one of the following forms:
▶ [c1 c2 ... cn] matches any of the characters c1 .. cn

▶ [0-9] matches any digit
▶ [a-z] matches any lower-case letter
▶ [A-Z] matches any upper-case letter
▶ [a-z A-Z] matches any letter

▶ R1 R2 matches a string s1 ++ s2 where s1 matches R1 and
s2 matches R2

▶ e.g. [0-9] [0-9] matches any two-digit string

▶ R+ matches one or more repetitions of what R matches
▶ e.g. [0-9]+ matches a natural number

▶ R* matches zero or more repetitions of what R matches

QUIZ

Which of the following strings are matched by [a-z A-Z] [a-z
A-Z 0-9]*?

(A) (empty string)

(B) 5

(C) x5

(D) x

(E) C and D

Back to token rules
We can name some common regexps like:

$digit = [0-9]
$alpha = [a-z A-Z]

and write [a-z A-Z] [a-z A-Z 0-9]* as $alpha [$alpha
$digit]*

[\+] { \p _ -> PLUS p }
...
$alpha [$alpha $digit _ \']* { \p s -> ID p s }
$digit+ { \p s -> NUM p (read s) }

▶ When you encounter a +, generate a PLUS token
▶ …
▶ When you encounter an alphanumeric string that starts with a

letter, save it in an ‘ID token
▶ When you encounter a nonempty string of digits, convert it

into an integer and generate a NUM

Running the Lexer

From the token rules, alex generates a function alexScan which
▶ given an input string, find the longest prefix p that matches

one of the rules
▶ if p is empty, it fails
▶ otherwise, it converts p into a token and returns the rest of

the string

Running the Lexer
We wrap this function into a handy function

parseTokens :: String -> Either ErrMsg [Token]

which repeatedly calls alexScan until it consumes the whole input
string or fails

We can test the function like so:

�> parseTokens "23 + 4 / off -"
Right [NUM (AlexPn 0 1 1) 23

, PLUS (AlexPn 3 1 4)
, NUM (AlexPn 5 1 6) 4
, DIV (AlexPn 7 1 8)
, ID (AlexPn 9 1 10) "off"
, MINUS (AlexPn 13 1 14)
]

�> parseTokens "%"
Left "lexical error at 1 line, 1 column"

QUIZ

What is the result of parseTokens "92zoo" (positions omitted
for readability)?

(A) Lexical error

(B) [ID "92zoo"]

(C) [NUM "92"]

(D) [NUM "92", ID "zoo"]

Parsing

We will use the tool called happy to generate the parser

Input to happy: a .y file that describes the grammar

Parsing

Wait, wasn’t this the grammar?

data Aexpr
= AConst Int
| AVar Id
| APlus Aexpr Aexpr
| AMinus Aexpr Aexpr
| AMul Aexpr Aexpr
| ADiv Aexpr Aexpr

Parsing

Wait, wasn’t this the grammar?

data Aexpr
= AConst Int
| AVar Id
| APlus Aexpr Aexpr
| AMinus Aexpr Aexpr
| AMul Aexpr Aexpr
| ADiv Aexpr Aexpr

This was abstract syntax

Now we need to describe concrete syntax
▶ What programs look like when written as text
▶ and how to map that text into the abstract syntax

Grammars

A grammar is a recursive definition of a set of trees
▶ each tree is a parse tree for some string
▶ parse a string s = find a parse tree for s that belongs to the

grammar

Grammars

A grammar is made of:
▶ Terminals: the leaves of the tree (tokens!)
▶ Nonterminals: the internal nodes of the tree
▶ Production Rules that describe how to “produce” a

non-terminal from terminals and other non-terminals
▶ i.e. what children each nonterminal can have:

Grammars

A grammar is made of:
▶ Terminals: the leaves of the tree (tokens!)
▶ Nonterminals: the internal nodes of the tree
▶ Production Rules that describe how to “produce” a

non-terminal from terminals and other non-terminals
▶ i.e. what children each nonterminal can have:

-- NT Aexpr can have as children:
Aexpr :

-- NT Aexpr, T '+', and NT Aexpr:
| Aexpr '+' Aexpr { ... }
-- NT Aexpr, T '-', and NT Aexpr, or
| Aexpr '-' AExpr { ... }
| ...

Terminals
Terminals correspond to the tokens returned by the lexer

In the .y file, we have to declare with terminals in the rules
correspond to which tokens from the Token datatype:

%token
TNUM { NUM _ $$ }
ID { ID _ $$ }
'+' { PLUS _ }
'-' { MINUS _ }
'*' { MUL _ }
'/' { DIV _ }
'(' { LPAREN _ }
')' { RPAREN _ }

▶ Each thing on the left is terminal (as appears in the
production rules)

▶ Each thing on the right is a Haskell pattern for datatype
Token

▶ We use $$ to designate one parameter of a token constructor
as the value of that token

▶ we will refer back to it from the production rules

Production rules

Next we define productions for our language:

Aexpr : TNUM { AConst $1 }
| ID { AVar $1 }
| '(' Aexpr ')' { $2 }
| Aexpr '*' Aexpr { AMul $1 $3 }
| Aexpr '+' Aexpr { APlus $1 $3 }
| Aexpr '-' Aexpr { AMinus $1 $3 }

The expression on the right computes the value of this node
▶ $1 $2 $3 refer to the values of the respective child nodes

Production rules
Aexpr : TNUM { AConst $1 }

| ID { AVar $1 }
| '(' Aexpr ')' { $2 }
| Aexpr '+' Aexpr { APlus $1 $3 }
| ...

Example: parsing (2) as AExpr:

1. Lexer returns Tokens: [LPAREN, NUM 2, RPAREN]

2. LPAREN is terminal '(', so let’s try '(' Aexpr ')'

3. Now we have to parse NUM 2 as Aexpr and RPAREN as ')'

4. NUM 2 is a token for nonterminal TNUM, so pick TNUM

5. The value of this Aexpr node is AConst 2, since the value of
TNUM is 2

6. The value of the top-level Aexpr node is also AConst 2 (see
the '(' Aexpr ')' production)

QUIZ

What is the value of the root AExpr node when parsing 1 + 2 +
3?

Aexpr : TNUM { AConst $1 }
| ID { AVar $1 }
| '(' Aexpr ')' { $2 }
| Aexpr '*' Aexpr { AMul $1 $3 }
| Aexpr '+' Aexpr { APlus $1 $3 }
| Aexpr '-' Aexpr { AMinus $1 $3 }

(A) Cannot be parsed as AExpr

(B) 6

(C) APlus (APlus (AConst 1) (AConst 2)) (AConst 3)

(D) APlus (AConst 1) (APlus (AConst 2) (AConst 3))

Running the Parser

First, we should tell the parser that the top-level non-terminal is
AExpr:

%name aexpr

From the production rules and this line, happy generates a
function aexpr that tries to parse a sequence of tokens as AExpr

We package this function together with the lexer and the evaluator
into a handy function

evalString :: Env -> String -> Int

Running the parser

We can test the function like so:

```haskell
�> evalString [] "1 + 3 + 6"
10

�> evalString [("x", 100), ("y", 20)] "x - y"
???

�> evalString [] "2 * 5 + 5"
???

�> evalString [] "2 - 1 - 1"
???
```


Precedence and associativity

�> evalString [] "2 * 5 + 5"
20

The problem is that our grammar is ambiguous!

There are multiple ways of parsing the string 2 * 5 + 5, namely
▶ APlus (AMul (AConst 2) (AConst 5)) (AConst 5)

(good)
▶ AMul (AConst 2) (APlus (AConst 5) (AConst 5))

(bad!)

Wanted: tell happy that * has higher precedence than +!

Precedence and associativity

�> evalString [] "2 - 1 - 1"
2

There are multiple ways of parsing 2 - 1 - 1, namely
▶ AMinus (AMinus (AConst 2) (AConst 1)) (AConst 1)

(good)
▶ AMinus (AConst 2) (AMinus (AConst 1) (AConst 1))

(bad!)

Wanted: tell happy that - is left-associative!

How do we communicate precedence and associativity to happy?

Solution 1: Grammar factoring
Aexpr : Aexpr '+' Aexpr2

| Aexpr '-' Aexpr2
| Aexpr2

Aexpr2 : Aexpr2 '*' Aexpr3
| Aexpr2 '/' Aexpr3
| Aexpr3

Aexpr3 : TNUM
| ID
| '(' Aexpr ')'

Intuition: AExpr2 “binds tighter” than AExpr, and AExpr3 is the
tightest

Now I cannot parse the string 2 * 5 + 5 as
▶ AMul (AConst 2) (APlus (AConst 5) (AConst 5))

▶ Why?

Solution 2: Parser directives

This problem is so common that parser generators have a special
syntax for it!

%left '+' '-'
%left '*' '/'

What this means:
▶ All our operators are left-associative
▶ Operators on the lower line have higher precedence

That’s all folks!

