Final Exam

Instructions: read these first!

Do not open the exam, turn it over, or look inside until you are told to begin.
Switch off cell phones and other potentially noisy devices.
Write your full name on the line at the top of this page. Do not separate pages.
You may refer to any printed materials, but no computational devices (such as laptops, calculators, phones, iPads, friends, enemies, pets, lovers).

Read questions carefully. Show all work you can in the space provided.
Where limits are given, write no more than the amount specified.
The rest will be ignored.
Avoid seeing anyone else's work or allowing yours to be seen.
Do not communicate with anyone but an exam proctor.
If you have a question, raise your hand.
When time is up, stop writing.
The points for each part are rough indication of the time that part should take.

1. [?? points]

In each question below, we have given a Scala function with missing type information. Your job is to

1. fill in appropriate types (so the function will be accepted by the typechecker),
2. write down one set of suitable inputs (i.e. of the corresponding types),
3. write down the output corresponding to the input.

Hint: Recall that syntax for anonymous functions in Scala is ($\mathrm{x} 1, \ldots, \mathrm{xn}$) $=>\mathrm{e}$ which is equivalent to Ocaml's fun (x1,..., xn) -> e
(a) [2 points]

```
def plus(x: T1, y: T1): T2 = x + y
val out = plus(in1, in2)
```

T1 = \qquad

T2 = \qquad
in1 = \qquad
in2 = \qquad
out = \qquad
(b) [5 points]

```
    def plussed(x: T1, y: T2): T3 = x + y(x)
```

 val out = plussed(in1, in2)
 T1 = \qquad

T2 = \qquad

T3 = \qquad

```
in1 =
```

\qquad
in2 = \qquad
out = \qquad
(c) $[8$ points $]$

```
def squash[A](xss: T1): T2 = {
            for ( xs <- xSS
                    ; x <- xS )
        yield x
}
    val out = squash(in)
```

$\mathrm{T} 1=$
\qquad

T2 = \qquad
in $=$ \qquad
out = \qquad
(d) [10 points]

```
def reduce[A](xs: T1, f: T2): T3 = {
        var acc = xs(0)
        for (x <- xs.tail) {
            acc = f(acc, x)
        }
        acc
}
val out = reduce(in1, in2)
```

$\mathrm{T1}=$
\qquad

```
T2 =
```

\qquad

```
\[
\text { T3 }=
\]
```

\qquad

```
in1 =
``` \(\qquad\)
```

in2 =

``` \(\qquad\)
```

out =

``` \(\qquad\)
(e) [10 points]
```

def explode[A](xs: T1): T2 = {
if (xs.isEmpty)
List(List())
else {
for ( ys <- explode(xs.tail)
; z <- List(List(), List(xs.head)) )
yield (z ++ ys)
}
}
val out = explode(in)
T1 =

```
\(\qquad\)
```

T2 =

```
\(\qquad\)
```

in =

```
\(\qquad\)
```

out =

```
\(\qquad\)
2. [?? points]
"MapReduce is a software framework introduced by Google to support distributed computing on large data sets on clusters of computers." (From WikiPedia)

This question will give you a flavor of what it is like to program using the MapReduce model, using a simple Scala implementation.
(a) [7 points] Consider the function expand whose type is given at the bottom.
```

def expand[A, B](f: A => List[B], xs: Iterator[A]): Iterator[B] = {
for ( x <- xs
; y<- f(x) )
yield y
}

```

What is the value of ans below?
```

val clone = (p => (0 until p._2).map(_ => p.__1).toList)
val ans = expand(clone, Iterator(("a", 1), ("b", 2), ("c", 3)))

```

\section*{Result:}
(b) [8 points] Consider the function insert
```

def insert[K, V](table: Map[K, List[V]], key: K, v: V): Map[K, List[V]] = {
if table.contains(key) {
val vs = table(key)
table += (key -> v::vs)
} else {
table += (key -> List(v))
}
}

```

What is the value of ans below?
```

val t = Map( "judynails" -> List(2)
, "larsumlaut" -> List(2, 2, 9)
, "caseylynch" -> List(3))
val ans = insert(t, "judynails", 4)

```

\section*{Result:}
(c) [5 points] Consider the function group whose type is given at the bottom.
```

def group[K, V](kvs: Iterator[(K, V)]): Map[K, List[V]] = {
var table: Map[K, List[V]] = Map()
for ((k, v) <- kvs) {
table = insert(table, k, v)
}
table
}

```

What is the value of ans below?
```

val kvs = Iterator( ("judynails" , 3)
("larsumlaut", 8)
("caseylynch", 19)
("caseylynch", 12)
("larsumlaut", 7)
("judynails" , 6))
val ans = group(kvs)

```

\section*{Result:}
(d) [10 points] Consider the function collapse whose type is given at the bottom.
```

def collapse[K, V](table: Map[K, List[V]], f: (V, V) => V): Map[K, V] = {
table.mapValues(reduce(_, f))
}

```

Hint: The reduce function is from Question 1(d).
Hint: The method 'mapValues' (for Scala HashMaps) behaves as follows:
```

scala> Map("one" -> 1, "two" -> 2).mapValues(_ + 100)
res: Map[String, Int] = Map("one" -> 101, "two" -> 102)

```

What is the value of ans below?
```

let table = Map( "judynails" -> List(9, 3)
, "larsumlaut" -> List(5, 2, 3)
"caseylynch" -> List(3, 6)
)
val ans = collapse(table, (x, y) => x + y)

```

\section*{Result:}
(e) [10 points] Finally, consider the function mapReduce whose type is given at the bottom.
```

def mapReduce[E, K, V]( xs : Iterator[E]
, mapper : E => List[(K, V)]
, reducer: (V, V) => V ) : Map[K, V] = {
val kvs = expand(mapper, xs)
val table = group(kvs)
val out = collapse(table, reducer)
out
}

```

Intuitively, the mapReduce function takes the arguments:
- xs: which is a collection of values of type E, e.g. a collection of documents,
- mapper: which is a function that maps each E value to a list of key-value pairs, kvs of type List [K, V].
- reducer: An accumulation function that takes a "current accumulation" value of type V a "next value" of type \(V\) and returns a new accumulated value of type \(V\) (e.g. like fold_left).
First, the mapper function is used to expand the list xs into a giant collection of key-value pairs kvs. Second, the expanded set of key-value pairs is grouped by the key to get table : Map [K, List[V]] Third, the reducer is used to reduce the list of values in each group in the table, and the reduced table out is returned. In the real implementation, each of the three steps of mapReduce is carried out in parallel across several (thousands of!) machines.
Assume that you are given the following:
```

type Doc // Definition is unimportant
val wwwdocs: Iterator[Doc] // The WWW as a Document collection
def docWords(d: Doc): List[String]

```
that is, a special type Doc, a collection of all WWW documents, and a function that returns a list of strings corresponding to the words in a given document. Your goal is to compute the frequency with which different words appear in documents on the Web. That is your goal is to compute a table wordCount: Map [String, Int] of the form
Map(w1 -> c1, w2 -> c2, ..., wn -> cn)
where ci is the number of times the word wi appears in documents across the Web. Fill in the blanks below to show how mapReduce. can be used to compute the word frequency table wordCount:
```

val wordcount = {
val fmap =
val fred =
mapReduce(wwwdocs, fmap, fred)
}

```
3. [?? points] We will write several Scala functions to do simple manipulation of images represented by type
```

type Image = List[List[Int]]

```
i.e. lists of lists of integers, with each integer representing a pixel. For example, the following would be a simple image of a smiley face.
```

val img1 = List( List(11, 0, 12)
, List( 0, 0, 0)
, List(13, 0, 14)
, List(15, 16, 17))

```

We can refer to each pixel of the image by its horizontal \(x\) and vertical \(y\) coordinate. The top left corner is \((0,0)\) and coordinates increase to the right and down. We can access coordinate (\(\mathrm{x}, \mathrm{y}\)) of img: Image as img (y) (x)
(a) [5 points] Fill in the body of the function square, which takes an image, and squares each integer in it. For example,
```

scala> square(img1)
res: Image = List( List(121, 0, 144)
, List( 0, 0, 0)
, List(169, 0, 196)
, List(225, 256, 289))

```

Fill in the blanks below to obtain an implementation of square .
```

def square(img: Image) : Image = {
for (___<- ___)
yield
}

```
(b) [10 points] Next, fill in the body of the function crop, such that crop (img, x1, y1, x2, y2) returns an image which only contains the pixels from img at coordinates \((\mathrm{x}, \mathrm{y})\), where \(\mathrm{x} 1<=\mathrm{x}<\mathrm{x} 2\) and \(\mathrm{y} 1<=\mathrm{y}<\mathrm{y} 2\). (You can assume that all such coordinates exist in img.) For example,
```

scala> crop(img1,0,1,2,4)
res: Image = List( List(0, 0)
, List(13, 0)
, List(15, 16))

```

Fill in the blanks below to obtain an implementation of crop .
```

def crop(img: Image, x1:Int, y1: Int, x2:Int, y2: Int): Image = {
for ( ___ <- __ )
yield

```
\(\qquad\)
```

}

```

Hint: For a list xs the call xs.slice (lo, hi) returns the sub-list of the lo, lo+1, ..., hi-1-th elements of xs For example,
```

scala> List(0, 10, 20, 30, 40, 50, 60, 70).slice(2, 6)
res: List[Int] = List (20, 30, 40, 50)

```
(c) [10 points] Next, let us write a helper function zip. Given lists 11 and 12 , zip \((11,12)\) returns a list of pairs. The nth element of the returned list is a pair consisting of the nth element of 11 and the nth element of 12 . If one of the lists is smaller than the other, the returned list contains pairs only for indices that both lists have. For example,
```

scala> zip(List(1,2,3), List(4,5,6))
res: List[Int] = List((1, 4), (2, 5), (3, 6))
scala> zip(List(1,2,3), List(4,5))
res: List[Int] = List((1, 4), (2, 5))

```

Fill in the blanks below to obtain an implementation of zip.
```

def zip[A](l1: List[A], l2: List[B]): List[(A, B)] = {

```
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\}
(d) [10 points] Given two images img1 and img2 of the same size, add (img1, img2) returns an image where each pixel is the sum of the corresponding pixels from img1 and img2. For example,
```

scala> add(img1, img1)
res: Img = List(List(22, 0, 24),
List( 0, 0, 0),
List(26, 0, 28),
List(30, 32, 34))

```

Fill the implementation of add_imgs below.
Hint: You may need another call to zip ...
```

def add(img1: Image, img2: Image): Image = {
for ((r1, r2) <- zip(img1, img2))
yield

```
\(\qquad\)
```

}

```
4. [?? points] In this question, you will implement integer sorting in Prolog in two different ways. First, we will use a simple approach, which is inefficient, and then we will implement a more efficient merge sort.

Note: In Prolog, the less-than-or-equal operator is \(=<\).
(a) [5 points] Fill in the implementation of the sorted predicate below. The predicate sorted (L) should hold if L is sorted in increasing order. For example:
```

?- sorted([]).
true.
?- sorted([10]).
true.
?- sorted([1,2,3,3,4]).
true.
?- sorted([10,2,3,3,4]).
false.

```

Fill in the skeleton below (the first two lines are for base cases, and note that \([\mathrm{A}, \mathrm{B} \mid \mathrm{T}]\) matches a list where the first two elements are \(A\) and \(B\), and where \(T\) is the rest of the list):
```

% Base Case 1
sorted(

```
\(\qquad\)
``` )
% Base Case 2
sorted(
```

\qquad

``` _)
``` \(\qquad\)
```

% Inductive Case
sorted([X1, X2 | T])

```
\(\qquad\)
(b) [5 points] The predicate sort (L1, L2) holds if L2 is a sorted version of L1. For example:
```

?- sort([4,1,3,2], L).
L = [1, 2, 3, 4].

```

Fill in the implementation of sort below, using the sorted predicate from part (a).
```

sort(L1, L2) :-

```
\(\qquad\)
Hint: You may use the built-in predicate permutation, which takes two lists and returns true if the two lists contain the same elements, but possibly in a different order. For example,
```

?- permutation([1,3,5], X).
X = [1, 3, 5] ;
X = [1, 5, 3] ;
X = [3, 1, 5] ;
X = [3, 5, 1] ;
X = [5, 1, 3] ;
X = [5, 3, 1] ;
false.

```
```

?- permutation([1,3, 3], X).
X = [1, 3, 3] ;
X = [1, 3, 3] ;
X = [3, 1, 3] ;
X = [3, 3, 1] ;
X = [3, 1, 3] ;
X = [3, 3, 1] ;
false.

```
(c) [10 points] In the previous parts, we implemented a simple sort predicate, but with some cheating, as we used permutation. Now, we will implement mergesort from scratch.
First, we need to implement split. The predicate split (L1,L2,L3) holds if L2 contains the even-indexed elements of L1 (counting from 0) and L3 contains the odd-indexed elements of L1. For example:
```

?- split([0], X, Y).
X = [0],
Y = [].
?- split([0,1,2], X, Y).
X = [0, 2],
Y = [1].
?- split([0,1,2,3,4,5,6], X, Y).
X = [0, 2, 4, 6],
Y = [1, 3, 5].

```
and, by the awesomeness of Prolog,
```

?- split(X, [0,1,2], [10,11,12]).
X = [0, 10, 1, 11, 2, 12].

```

Fill in the implementation of split below:
```

% Base Case 1
split(

```
\(\qquad\)
``` ,
``` \(\qquad\)
\(\qquad\)
``` )
``` \(\qquad\)
```

% Base Case 2
split(

```
\(\qquad\)
\(\qquad\)
``` ,
``` \(\qquad\)
``` )
% Inductive Case
split(
```

\qquad

``` ——,
``` \(\qquad\)
``` )
``` \(\qquad\)
(d) [10 points] The next step is to implement merge, which takes two sorted lists and returns a sorted list containing all the elements of both input lists. Here is an OCaml implementation of merge that you need to match in Prolog:
```

let rec merge xs ys =
match (xs, ys) with
| ([], _) -> ys
| (_, []) -> xs
| (x::xs', y::ys') -> if x <= y
then x :: (merge xs' ys)
else y :: (merge xs ys')

```

The merge predicate in Prolog takes three parameters: merge (L1, L2, L3) holds if L3 is the result of merging the sorted lists L1 and L2 (meaning you can assume that L1 and L2 are sorted). For example:
```

?- merge([1, 10], [3, 4, 20], L).
L = [1, 3, 4, 10, 20] .
?- merge([X, 3], [2, 4, Y], [1, 2, 3, 4, 6]).
X = 1,
Y = 6.

```

Fill in the implementation of merge below:
```

% Base Case 1
merge([], Ys, Res) :- _
% Base Case 2
merge(Xs, [], Res) :- _
% Inductive Case 1
merge(

```
\(\qquad\)
``` ,
``` \(\qquad\)
\(\qquad\)
``` ) :-
``` \(\qquad\)
``` .
% Inductive Case 2
merge (
``` \(\qquad\)
``` ,
``` \(\qquad\)
\(\qquad\)
``` ) :-
``` \(\qquad\)
``` .
```

(e) [10 points] Finally, you will use split and merge to implement merge sort. As a reminder, here is an Ocaml implementation:

```
let rec merge_sort \(x s=\) match \(x s\) with
    | [] -> []
    | [x] -> [x]
    | _ -> let ys, zs = split xs in
        merge (merge_sort ys) (merge_sort zs)
```

Define a predicate merge_sort (L, S) which holds if S is a sorted version of L. For example:

```
?- merge_sort([20,3,6,2,7], X).
x = [2, 3, 6, 7, 20] .
```

Fill in the implementation of merge_sort below:

```
% Base Case 1
merge_sort(_____).
% Base Case 2
merge_sort(
```

\qquad

``` ,
``` \(\qquad\)
``` ).
\% Inductive Case
merge_sort(L, S) :-
``` \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
5. [?? points] For this problem, you will write Prolog code that checks whether a given ML expression is well-scoped, that is, that every variable that is used in the expression is bound in the expression. That is, your prolog code will check, just by looking at the code, not by running it, whether or not your nanoML implementation would have thrown a Nano.MLFailure "Variable not bound: ..." exception.
First, we shall encode nanoML expressions as Prolog terms via the following grammar.
\[
\begin{aligned}
\text { expr }::= & \mid \operatorname{const}(\mathrm{i}) \\
& \mid \operatorname{var}(\mathrm{x}) \\
& \mid \mathrm{plus}(\text { expr }, \text { expr }) \\
& \mid \operatorname{leq}(\text { expr } \text { expr }) \\
& \text { ite }(\text { expr }, \text { expr }) \\
& \mid \text { letin }(\operatorname{var}(\mathrm{x}), \text { expr }, \text { expr }) \\
& \text { fun }(\operatorname{var}(\mathrm{x}), \text { expr }) \\
& \operatorname{app}(\text { expr }, \text { expr })
\end{aligned}
\]

The table below shows several examples of Ocaml expressions, the Prolog term encoding that expression.
\begin{tabular}{|c|c|}
\hline ML Expression & Prolog Expression Term \\
\hline 2 & const (2) \\
\hline X & var (x) \\
\hline \(2+3\) & plus (const (2), const (3)) \\
\hline \(2<=3\) & leq (const (2), const (3)) \\
\hline fun \(\mathrm{x}->\mathrm{x}<=4\) & fun (var (x), leq(var (x), const (4))) \\
\hline fun \(x->\) fun \(y ~->\) if \(x\) then \(y\) else 0 & ```
fun(var(x), fun(var(y),
 ite(var(x),var(y), const(0))))
``` \\
\hline let \(\mathrm{x}=10\) in x & letin(var(x), const (10), var(x)) \\
\hline ```
fun x ->
    let }\textrm{y}=\textrm{x}\mathrm{ in
        y + y
``` & ```
fun(var(x),
 letin(var(y),var(x)
 plus(var(y),var(y))))
``` \\
\hline
\end{tabular}
(a) [10 points] Write a Prolog predicate reads \((\mathrm{E}, \mathrm{X})\) that is true if X is read anywhere inside the expression E . When you are done, you should get the following behavior:
```

?- reads(plus(const(2),const(3)), x).
False.
?- reads(letin(var(x),const(1),var(a)), X).
X = a
True.
?- reads(fun(var(x),plus(var(a),var(b))), X).
X = a;
x = b;
True.
?- reads(fun(var(b),plus(var(a),var(b))), X).
X = a;
x = b;
True.

```

Write your solution by filling in the grid below. Hint: If you need an "Or", you may add extra rules where needed, (or better, just use the ; operator.)
\begin{tabular}{|c|c|}
\hline reads(const(I), X) :- & \(0=1 . \quad\) \% i.e. false \\
\hline reads (var (X), Y) :- & \\
\hline reads (plus (E1, E2), X) :- & \\
\hline reads(leq(E1,E2), X) :- & \\
\hline reads(ite (E1, E2, E3), X) :- & \\
\hline reads(letin (var (Y), E1, E2), X) :- & \\
\hline reads(fun(var(Y), E), X) :- & \\
\hline reads (app (E1,E2), X) :- & \\
\hline
\end{tabular}
(b) [15 points] Write a Prolog predicate wellscoped (E) that is true if E is well-scoped, that is, each variable that is read is previously bound. When you are done, you should get the following behavior:
```

?- wellscoped(plus(var(a),const(3))).
False.
?- wellscoped(letin(var(a),const(1),plus(var(a),const(3)))).
True.
?- wellscoped(fun(var(b),plus(var(a),var(b)))).
False.
?- wellscoped(fun(var(b),fun(var(a), plus(var(a),var(b))))).
True.
?- wellscoped(app(fun(var(a),plus(var(a),const(1))), var(a))).

```

False.
?- wellscoped(app(fun(var(a), plus(var(a), const(1))), letin(var(a), const(1), var(a)))).
True.
To define wellscoped, write a helper predicate helper ( \(\mathrm{E}, \mathrm{Xs}\) ) which is true if every variable that is read in E either occurs in Xs or occurs bound inside E . With this, you can define wellscoped as:
wellscoped (E) :- helper (E, []).
Write your definition for helper by filling in the grid below.
Hint: You need not use reads. You may use the built-in predicate member (X,Ys) which returns true if the atom \(X\) appears in the list Ys.
```

