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1. [?? points]

(a) [5 points] What type does Ocaml infer for (<.>)

let (<.>) = fun f g x -> f (g x)

(b) [5 points] What does the following expression evaluate to? (The <.>) is as defined for the previous part.)

let foo = fun x -> x + 10 in
let bar = fun x -> x * 10 in
let goo = foo <.> bar in
goo 0

(c) [10 points] Write a tail-recursive function whose behavior is identical to the function below:

let rec giftList l = match l with
| [] -> "that’s what I want for Christmas!"
| g::l’ -> g ˆ " and " ˆ giftList l’
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2. [?? points]

In this question, we have given you three concrete recursive functions. Your goal is to write generalized (polymorphic,
higher-order) versions of the functions that encapsulate the recursion pattern and make it easily reusable.

(a) [4 points] let rec getEven xs = match xs with
| [] -> None
| x::xs’ -> if (x mod 2 = 0)

then Some x
else getEven xs’

What is the type of getEven ? (Recall: type ’a option = None | Some of ’a)

(b) [6 points] Write a function:
val find_first: (’a -> bool) -> ’a list -> ’a option

such that getEven is equivalent to findFirst (fun x -> x mod 2 = 0)

let rec find_first f xs = match xs with

| [] ->

| x::xs’ ->

(c) [3 points] Consider the tree type
type ’a tree = Leaf | Node of ’a * ’a tree * ’a tree

What is the type of the following function tree_to_string

let rec tree_to_string t = match t with
| Leaf -> ""
| Node(x, l, r) -> let ls = tree_to_string l in

let rs = tree_to_string r in
ls ˆ ", " ˆ x ˆ ", " ˆ rs
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(d) [7 points] Write a function
val post_fold: (’a -> ’b -> ’b -> ’b) -> ’b -> ’a tree -> ’b

such that tree_to_string is equivalent to
post_fold (fun x ls rs -> ls ˆ ", " ˆ x ˆ ", " ˆ rs) ""

let rec post_fold f b t = match t with

| Leaf ->

| Node (x,l,r) ->

(e) [10 points] Write a function
val in_fold: (’a -> ’b -> ’a) -> ’a -> ’b tree -> ’a

such that tree_to_string is equivalent to in_fold (fun str x -> str ˆ ", " ˆ x ˆ ", ") ""

let rec in_fold f b t = match t with

| Leaf ->

| Node (x,l,r) ->



CSE 130, Spring 2012 Midterm Exam Page 4 of ??

3. [?? points]

Consider the following datatype

type (’a, ’b) either = Left of ’a | Right of ’b

The either type is a generalization of option which instead of just representing the junk value as None, allows you
to attach some information of type ’a.

(a) [2 points] Write down an expression that has the type
(int, string) either

and also has the type
(int, bool) either

(Say what?! How can an expression have two types? Remember [] can have type int list and also have type
string list.)

(b) [2 points] Write down an expression that has the type
(int, string) either

but does not have the type
(int, bool) either

(c) [6 points] Write a function
val assoc: ’k -> (’k * ’v) list -> (’k, ’v) either

The function should have the following behavior:

# assoc "z" [("x", 1); ("y", 2); ("z", 3); ("z", 4)] ;;
- : (string, int) either = Right 3

# assoc "z" [("x", 1); ("y", 2)] ;;
- : (string, int) either = Left "z"

let rec assoc key kvs = match kvs with

| [] ->

| (k,v)::kvs’ ->
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(d) [7 points] Write a function
val map: (’b -> ’c) -> (’a, ’b) either -> (’a, ’c) either

The function should have the following behavior:

# map (fun i -> i + 1) (Left "x")
- : (string, int) either = Left "x"
# map (fun i -> i + 1) (Right 12)
- : (’a, int) either = Right 13
# map string_of_int (Right 12)
- : (’a, string) either = Right "12"

let map f e =

(e) [8 points] Write a function
val map2: (’b ->’c ->’d) -> (’a,’b) either -> (’a,’c) either -> (’a,’d) either

The function should have the following behavior:

# map2 (+) (Left "x") (Left "y") ;;
- : (string, int) either = Left "x"
# map2 (+) (Left "x") (Right 12) ;;
- : (string, int) either = Left "x"
# map2 (+) (Right 12) (Left "x") ;;
- : (string, int) either = Left "x"
# map2 (+) (Right 12) (Right 7) ;;
- : (’a, int) either = Right 19

let map2 f e1 e2 =
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4. [?? points]

Consider the following (subset) of Nano-ML.

type binop = Plus | Div
type expr = Const of int | Var of string | Bin of expr * binop * expr

As you doubtless know, the evaluation of certain expressions can result in errors such as unbound variables and divide-
by-zeros. Instead of using exceptions as (in the programming assignment) we will track errors via the type:

type error = UnboundVariable of string | DivideByZero

(a) [5 points] Use the function assoc above to write a function
val lookup: string -> (string * int) list -> (error, int) either

The function should have the following behavior:

# lookup "z" [("x", 1); ("y", 2); ("z", 3); ("z", 4)];;
- : (error, int) either = Right 3
# lookup "z" [("x", 1); ("y", 2)] ;;
- : (error, int) either = Left (UnboundVariable "z")

let lookup x env =

(b) [5 points] Write a function
val safeDiv: int -> int -> (error, int) either

Such that safeDiv n m returns the integer result n/m when it is defined (i.e. when m is not zero) and returns the
divide-by-zero error otherwise. Concretely, your function should have the following behavior:

# safeDiv 40 2;;
- : (error, int) either = Right 20
# safeDiv 40 0;;
- : (error, int) either = Left DivideByZero

let safeDiv n m =
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(c) [10 points] Use the function lookup to write a function
val eval: (string * int) list -> expr -> (error, int) either

The function should have the following behavior:

# let e0 = Bin (Var "x", Plus, Var "y");;

# let e1 = Bin (e0, Div, Var "y");;
# eval [("x", 1); ("y", 2)] e1;;
- : (error, int) either = Right 1

# let e2 = Bin (e1, Div, Var "z");;
# eval [("x", 1); ("y", 2)] e2;;
- : (error, int) either = Left (UnboundVariable "z")

# let e3 = Bin (e1, Div, Const 0);;
# eval [("x", 1); ("y", 2)] e3;;
- : (error, int) either = Left DivideByZero

let rec eval env e = match e with

| Const i ->

| Var v ->

| Bin(e1, Plus, e2) ->

| Bin(e1, Div, e2) ->


