
CSE 130, Spring 2015
Instructor: Ranjit Jhala

Name/ID

Midterm Exam

Instructions: read these first!

Do not open the exam, turn it over, or look inside until you are told to begin.

Switch off cell phones and other potentially noisy devices.

Write your full name on the line at the top of this page. Do not separate pages.

You may refer to hand-written or printed cheat sheets, but no computational devices
(such as laptops, calculators, phones, iPads, friends, enemies, pets, lovers).

Read questions carefully. Show all work you can in the space provided.

Where limits are given, write no more than the amount specified.
The rest will be ignored.

Avoid seeing anyone else’s work or allowing yours to be seen.

Do not communicate with anyone but an exam proctor.

If you have a question, raise your hand.

When time is up, stop writing.

The points for each part are rough indication of the time that part should take.

Question Points Score

1 20

2 15

3 15

Total: 50

CSE 130, Spring 2015 Midterm Exam Page 1 of 6

1. [20 points] For each of the following OCaml programs, write down the Value of the given variable, or circle Error if
you think there is a type or run-time error.

(a) [5 points]
let ans =

let x = 0 in
let a1 = let x = 1 in

fun y z -> [x;y;z]
in
let a2 = let x = 100 in

a1 x
in
a2 x

Error Value ans=

The next two parts share the following type and function definition:

type ’a tree = Leaf
| Node of ’a * ’a tree * ’a tree

let rec fold f b t = match t with
| Leaf -> b
| Node (x, l, r) -> f x (fold f b l) (fold f b r)

let t0 = Node ("cat"
, Node ("dog" , Leaf, Leaf)
, Node ("hippo", Leaf, Leaf))

(b) [4 points]
let ans =

let f = (fun _ vl vr -> 1 + vl + vr) in
fold f 0 t

Error Value ans=

(c) [4 points]
let ans =
let f = (fun x vl vr -> vl ˆ x ˆ vr) in
fold f "" t0

Error Value ans=

CSE 130, Spring 2015 Midterm Exam Page 2 of 6

The next two parts share the following type and function definition:

type ’a option = None | Some of ’a

let rec find f xs = match xs with
| [] -> None
| (x::xs’) -> if f x then

Some x
else

find f xs’

let xs0 = [2;4;8;16;32]

(d) [4 points]
let ans = let f x = x > 10 in

find f xs0

Error Value ans=

(e) [3 points]
let ans = let f x = (x mod 2) = 1 in

find f xs0

Error Value ans=

CSE 130, Spring 2015 Midterm Exam Page 3 of 6

2. [15 points]

For this problem, you will write some functions that: use Ocaml’s lists to implement a Set API. We will represent sets
of values of type ’a by using lists.

type ’a set = Set of ’a list

(a) [2 points] First, implement a function

val empty : ’a set

by filling in the definition below

let empty = =

(b) [5 points] Write a function

val member : ’a -> ’a set -> bool

such that member x s returns true if x is in the set corresponding to s and false otherwise.

let member x s = match s with

| ->

| ->

(c) [3 points] Write a function

val add : ’a -> ’a set -> ’a set

such that add x s returns a set which has all the elements of s and also the element x.

let add x s = match s with

| ->

CSE 130, Spring 2015 Midterm Exam Page 4 of 6

We can use add to obtain a function

val union : ’a set -> ’a set -> ’a set

such that union s1 s2 returns a new set which has all the elements of s1 and also the elements of s2.

let union s1 s2 = match s2 with
| Set x2s -> List.fold_left (fun s x -> add x s) s1 x2s

(d) [5 points] Finally, write a function

val del : ’a -> ’a set -> ’a set

such that del x s contains all the elements of s except the element x. Hint: Use List.filter.

let del x s = match s with

| ->

When you are done, you should see the following behavior at the Ocaml prompt:

let s0 = empty ;;
(mem 1 s0, mem 2 s0) ;;
- : bool * bool = (false, false)

let s1 = add 1 s0 ;;
(mem 1 s1, mem 2 s1) ;;
- : bool * bool = (true, false)

let s2 = add 2 s1 ;;
(mem 1 s2, mem 2 s2) ;;
- : bool * bool = (true, true)

let s3 = union s1 s2 ;;
(mem 1 s3, mem 2 s3) ;;
- : bool * bool = (true, true)

let s4 = del 1 s3 ;;
(mem 1 s4, mem 2 s4) ;;
- : bool * bool = (false, true)

CSE 130, Spring 2015 Midterm Exam Page 5 of 6

3. [15 points]

Consider the following small subset of NanoML:

type binop = Plus

type expr = Const of int
| Var of string
| Bin of expr * binop * expr
| Let of string * expr * expr
| App of expr * expr
| Fun of string * expr

Well-formed Expressions: The following expressions e1, e2, e3 are good in that all the variables that are used are
defined i.e. bound in the expression:

(* e1 === 1 + 2 *)

let e1 = Bin (Const 1, Plus, Const 2)

(* e2 === let x = 1 in
let y = 2 in
x + y *)

let e2 = Let ("x", Const 1,
Let ("y", Const 2,
Bin (Var "x", Plus, Var "y")))

(* e3 === let x = 10 in
(fun y -> x + y) x *)

let e3 = Let ("x", Const 10,
App (Fun ("y", Plus (Var "x", Plus, Var "y"))

,Var "x"))

Ill-formed Expressions: However, the following expressions e1’, e2’ and e3’ are bad because they contain unde-
fined (or “unbound” variables). That is, if you try to evaluate them in an empty environment (i.e. run eval ([], e))
you will get a "variable not bound" error:

(* e1’ === 1 + x *)

let e1’ = Bin (Const 1, Plus, Var "x")

(* e2’ === let y = 2 in
x + y *)

let e2’ = Let ("y", Const 2,
Bin (Var "x", Plus, Var "y"))

CSE 130, Spring 2015 Midterm Exam Page 6 of 6

(* e3’ === (let z = 10 in
(fun y -> y + z)) z *)

let e3’ = App (Let ("z", Const 10,
Fun ("y", Plus (Var "y", Plus, Var "z")))

,Var "z")

(a) [12 points] Use empty, add, union and del to write a function

val free : expr -> string set

such that free e returns the set of free variables in an expression e.

let rec free e = match e with

| Var x ->

| Const n ->

| Bin (e1, op, e2) ->

| App (e1, e2) ->

| Let (x, e1, e2) ->

| Fun (x, e1) ->

When you are done, you should get the following behavior:
mem "x" (free e1) ;;
- : bool = false

mem "x" (free e1’) ;;
- : bool = true

(b) [3 points] Next, use free to complete the implementation of

let isWellFormed e =

When you are done, you should get the following behavior:

List.map isWellFormed [e1; e2; e3];;
- : bool list = [true; true; true]

List.map isWellFormed [e1’; e2’; e3’];;
- : bool list = [false; false; false]

