```
x y -- no binders at all!
\y -> x y -- no |x binder
(\x -> \y -> y) x -- x is outside the scope of the |x binder;
-- intuition: it's not "the same" x
```


"make"

QUIZ

In the expression $(\backslash \times \rightarrow \times$ Free x bound or free?
A. bound and
B. free
C. first occurrence is bound, second is free
D. first occurrence is bound, second and third are free
E. first two occurrences are bound, third is free

Free Variables

An variable x is free in e if there exists a free occurrence of x in e

We can formally define the set of all free variables in a term like so:

$$
\begin{aligned}
& \mathrm{FV}(\mathrm{x})=\text { ??? }\{x\} \\
& F V(\backslash x->e)=? ? ? \quad F V(e)-\{x\} \\
& F V(e 1-e 2)=? ? ? ~ F V\left(e_{1}\right) \cup F V\left(e_{2}\right) \\
& (\underbrace{(\lambda x \rightarrow x) z}_{e_{1}}) \underbrace{\operatorname{dog}}_{e_{2}}
\end{aligned}
$$

"Closed"Expressions
If e has no free variables it is said to be closed

- Closed expressions are also called combinators

What is the shortest closed expression?

Rewrite Rules of Lambda Calculus

1. α-step (aka renaming formals)
2. β-step (aka function call)

Semantics: β-Reduction

where e1[x := e2] means "e1 with all free occurrences of x replaced with e2"

Computation by search-and-replace:

- If you see an abstraction applied to an argument, take the body of the abstraction and replace all free occurrences of the formal by that argument
- We say that (\x -> e1) e2 β-steps to $\mathrm{e} 1[\mathrm{x}:=\mathrm{e} 2]$

Examples

```
(\x -> x) apple
=b> apple
```

Is this right? Ask Elsa (http://goto.ucsd.edu:8095/index.html\#?demo=blank.lc)!
$(I f \rightarrow B O D Y)$ ARG
($\backslash \mathrm{f}$-> $\mathrm{f}(\mid \mathrm{x}$-> x$)$) (give apple)
=b> ???
BODY $[f:=A R G]$

QUIZ
$\underset{(\backslash x \rightarrow(\backslash y->y))}{1 x} \rightarrow$ BODY Apple
=b> ???
A. apple
B. \y -> apple
C. \x -> apple
D. $\backslash y->y$
E. $\backslash x->y$

QUIZ

$$
\begin{gathered}
\left(\backslash x->\frac{\text { BOD }}{\left(\backslash x^{4}->x\right)}\right. \text { AR LT } \\
=b>? ? ? \frac{x p p l e}{} \\
\text { apple }(\backslash x \rightarrow x)
\end{gathered}
$$

A. apple (\x -> x)
B. apple (\apple -> apple)
C. apple ($\backslash x$-> apple)
D. apple
E. $\langle x$-> x

A Tricky One

$$
\begin{aligned}
& (\backslash \text { tmp } \rightarrow x) \\
& (\backslash x->(\backslash \underline{y}->x)) y \\
& =b>\underset{|l| m p}{\mid y} \rightarrow y
\end{aligned}
$$

Is this right?

Something is Fishy
$(\backslash x->(\backslash y->x)) y$
$=b>$ ly $->y$
Is this right?

Problem: the free y in the argument has been captured by \y!
Solution: make sure that all free variables of the argument are different from the binders in the body.
forevars DIFF Than params

Capture-Avoiding Substitution
We have to fix our definition of β-reduction:

$$
(\backslash x \text {-> e1) ez =b> e1[x := e2] }
$$

where e1[x:=e2] means "et with all free occurrences of * replaced with e e"

- el with all free occurrences of x replaced with en, as long as no free variables of ez get captured
- undefined otherwise

Formally:

$$
\begin{aligned}
& x[x:=e] \quad=e \\
& y[x:=e] \quad=y \quad--\operatorname{assuming} x /=y \\
& \text { (e1 e2) } \mathrm{x}:=\mathrm{e}] \quad=(\mathrm{e} 1[\mathrm{x}:=\mathrm{e}])(\mathrm{e} 2[\mathrm{x}:=\mathrm{e}]) \\
& \text { (} \backslash \mathrm{x} \text {-> e1) } \mathrm{x}:=\mathrm{e}] \quad=\mid x \text {-> e1 -- why do we leave `e1` alone? } \\
& \text { (\y -> e1) }[x:=e] \\
& \text { | not (y in } F V(e))=\text { ly }->\text { e1[x := e] } \\
& \text { | otherise }=\text { undefined -- wait, but what do we do then??? }
\end{aligned}
$$

Rewrite Rules of Lambda Calculus

1. α-step (aka renaming formals)
2. β-step (aka function call)

$$
\begin{aligned}
& \binom{\lambda}{(\lambda} \\
& \quad=a)\left(\lambda y \rightarrow e\left[x_{i}=y\right]\right) \\
& \begin{array}{c}
\lambda a \rightarrow a \\
\lambda b \rightarrow b
\end{array}
\end{aligned}
$$

Semantics: α-Renaming

$$
\begin{aligned}
& \text { \x -> e =a> } \backslash y \text {-> e[x := y] } \\
& \text { where not (y in } \operatorname{FV}(e) \text {) }
\end{aligned}
$$

- We can rename a formal parameter and replace all its occurrences in the body
- We say that $\backslash x$-> e α-steps to $\backslash \mathrm{y}$-> $\mathrm{e}[\mathrm{x}:=\mathrm{y}]$

Example:
|x -> x =a> $\mid y$-> y =a> $\backslash z$-> z

All these expressions are $\boldsymbol{\alpha}$-equivalent

What's wrong with these?
$--(A)$
$\mid f->f x \quad=a>\quad \backslash x->x \times$
-- (B)
(\x -> \y -> y) y =a> ($\backslash x$-> \z -> z) z
-- (C)
|x -> \y -> x y =a> \apple -> \orange -> apple orange

The Tricky One

```
(\x -> (\y -> x)) y
=a> ???
```

To avoid getting confused, you can always rename formals, so that different variables have different names!

Normal Forms

A redex is a λ-term of the form
($\backslash x$-> e1) e2
A λ-term is in normal form if it contains no redexes.

QUIZ
Which of the following terms are not in normal form?
A. x
can still be reduced
B. $\mathrm{x} y$
C. $(\backslash x->x) y$
D. $x(\backslash y->y)$ NOT a redex (becaul iso
E. C and D

Semantics: Evaluation

$\mathrm{A} \lambda$-term e evaluates to e^{\prime} if

1. There is a sequence of steps
e =?> e_1 =?> ... =?> e_N =?> e'
where each $=$?> is either $=a>$ or $=b>$ and $N>=0$
2. e^{e} is in normal form

Examples of Evaluation

$$
\begin{aligned}
& \text { (\x -> x) apple } \\
& \text { =b> apple }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \backslash \mathrm{x} \text {-> } \mathrm{x} \text { x) (} \backslash \mathrm{x} \text {-> } \mathrm{x} \text {) } \\
& \text { =?> ??? }
\end{aligned}
$$

Elsa shortcuts

Named λ-terms:

