
Lambda Calculus

Your Favorite Language

Probably has lots of features:

Assignment ( x = x + 1 )

Booleans, integers, characters, strings, …

Conditionals

Loops

return , break , continue

Functions

Recursion

References / pointers

Objects and classes

Inheritance

…

Which ones can we do without?

What is the smallest universal language?
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What is computable?

Before 1930s

Informal notion of an e�ectively calculable function:



can be computed by a human with pen and paper, following an algorithm

 

 

 

 

1936: Formalization

What is the smallest universal language?



Alan Turing

The Turing Machine (https://en.wikipedia.org/wiki/Turing_machine)

 

 



Alonzo Church

The Lambda Calculus

 

 

 

 

 

 

 

 

 

 



 

 

 

The Next 700 Languages

Peter Landin

Whatever the next 700 languages turn out to be, they will surely be variants of

lambda calculus.

Peter Landin, 1966



 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Lambda Calculus

Has one feature:

Functions

 

 

 

 

 

 

 

define all



 

 

 

No, really

Assignment ( x = x + 1 )

Booleans, integers, characters, strings, …

Conditionals

Loops

return , break , continue

Functions

Recursion

References / pointers

Objects and classes

Inheritance

Re�ection

 

 

 

 

 

 

 

 

 

 

EE



More precisely, only thing you can do is:

De�ne a function

Call a function

 

 

 

 

 

 

 

 

 

 

Describing a Programming Language

Syntax: what do programs look like?

Semantics: what do programs mean?

Operational semantics: how do programs execute step-by-step?
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Syntax: What Programs Look Like

 

e ::= x 

    | \x -> e 

    | e1 e2

 

Programs are expressions e  (also called λ-terms) of one of three kinds:

Variable

x , y , z

Abstraction (aka nameless function de�nition)

\x -> e

x  is the formal parameter, e  is the body

“for any x  compute e ”

Application (aka function call)

e1 e2

e1  is the function, e2  is the argument

in your favorite language: e1(e2)

Expression

Je aim returne

I e Cee



(Here each of e , e1 , e2  can itself be a variable, abstraction, or application)

 

 

 

 

 

 

 

 

 

 

Examples

\x -> x             -- The identity function 

                    -- ("for any x compute x") 

 

\x -> (\y -> y)     -- A function that returns the identity function 

  

\f -> f (\x -> x)   -- A function that applies its argument  

                    -- to the identity function
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QUIZ

Which of the following terms are syntactically incorrect?

A. \(\x -> x) -> y

B. \x -> x x

C. \x -> x (y x)

D. A and C

E. all of the above

 

Correct answer: A
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Examples

\x -> x             -- The identity function 

                    -- ("for any x compute x") 

 

\x -> (\y -> y)     -- A function that returns the identity function 

  

\f -> f (\x -> x)   -- A function that applies its argument  

                    -- to the identity function

 

How do I de�ne a function with two arguments?

e.g. a function that takes x  and y  and returns y ?

 

 

 

 

 

 

 

Ix fly y



 

 

 

 

 

\x -> (\y -> y)     -- A function that returns the identity function 

                    -- OR: a function that takes two arguments 

                    -- and returns the second one!

 

 

 

 

 

 

 

 

 

 

 

 

How do I apply a function to two arguments?

e.g. apply \x -> (\y -> y)  to apple  and banana ?

t my banana

e



 

 

 

 

 

 

 

 

 

 

 

 

(((\x -> (\y -> y)) apple) banana) -- first apply to apple, 

                                   -- then apply the result to banana

 

 

 

 

 

 

 

 

 

 

 



Syntactic Sugar

 

 

instead of we write

\x -> (\y -> (\z -> e)) \x -> \y -> \z -> e

\x -> \y -> \z -> e \x y z -> e

(((e1 e2) e3) e4) e1 e2 e3 e4

 

 

\x y -> y     -- A function that that takes two arguments 

              -- and returns the second one... 

               

(\x y -> y) apple banana -- ... applied to two arguments

 

 

 

 

 

 

 

 

 



 

 

 

Semantics : What Programs Mean

 

How do I “run” / “execute” a λ-term?

 

Think of middle-school algebra:

-- Simplify expression: 

 

  (x + 2)*(3*x - 1) 

 = 

  ???

 

Execute = rewrite step-by-step following simple rules, until no more rules apply
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Rewrite Rules of Lambda Calculus

 

1. α-step (aka renaming formals)

2. β-step (aka function call)

 

But �rst we have to talk about scope

 

 

 

 

 

 

Semantics: Scope of a Variable

The part of a program where a variable is visible

In the expression \x -> e

identifyfun 2

X x ax x
a cab b

binder
scopeofx



x  is the newly introduced variable

e  is the scope of x

any occurrence of x  in \x -> e  is bound (by the binder \x )

 

For example, x  is bound in:

  \x -> x 

  \x -> (\y -> x)

 

 

An occurrence of x  in e  is free if it’s not bound by an enclosing abstraction

 

For example, x  is free in:

  x y                -- no binders at all!   

  \y -> x y          -- no \x binder 

  (\x -> \y -> y) x  -- x is outside the scope of the \x binder; 

                     -- intuition: it's not "the same" x

 

 

 

 

 



 

 

 

 

 

 

QUIZ

In the expression (\x -> x) x , is x  bound or free?

A. bound

B. free

C. �rst occurrence is bound, second is free

D. �rst occurrence is bound, second and third are free

E. �rst two occurrences are bound, third is free

 

Correct answer: C
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Free Variables

An variable x  is free in e  if there exists a free occurrence of x  in e

 

We can formally de�ne the set of all free variables in a term like so:

FV(x)       = {x} 

FV(\x -> e) = FV(e) \ {x} 

FV(e1 e2)   = FV(e1) + FV(e2)

 

 

 

 

 

 

 

 

 



 

 

 

Closed Expressions

If e  has no free variables it is said to be closed

Closed expressions are also called combinators

 

 

What is the shortest closed expression?

Answer: \x -> x

 

 

 

 

 

 

 

 

 

 

 

 



Rewrite Rules of Lambda Calculus

 

1. α-step (aka renaming formals)

2. β-step (aka function call)

 

 

 

 

 

 

 

 

 

 

 

 

Semantics: β-Reduction

 

  (\x -> e1) e2   =b>   e1[x := e2]

 

where e1[x := e2]  means “ e1  with all free occurrences of x  replaced with e2 ”



 

 

Computation by search-and-replace:

If you see an abstraction applied to an argument, take the body of the abstraction

and replace all free occurrences of the formal by that argument

We say that (\x -> e1) e2  β-steps to e1[x := e2]

 

 

 

 

 

 

 

 

 

 

 

 

Examples

 

(\x -> x) apple      

=b> apple



Is this right? Ask Elsa (http://goto.ucsd.edu:8095/index.html#?demo=blank.lc)!

 

 

(\f -> f (\x -> x)) (give apple) 

=b> give apple (\x -> x)

 

 

 

 

 

 

 

 

 

 

 

 

QUIZ

 

(\x -> (\y -> y)) apple 

=b> ???

A. apple



B. \y -> apple

C. \x -> apple

D. \y -> y

E. \x -> y

 

Correct answer: D.

 

 

 

 

 

 

 

 

 

 

 

QUIZ

 

(\x -> x (\x -> x)) apple 

=b> ???



A. apple (\x -> x)

B. apple (\apple -> apple)

C. apple (\x -> apple)

D. apple

E. \x -> x

 

Correct answer: A.

 

 

 

 

 

 

 

 

 

 

 

A Tricky One

 



(\x -> (\y -> x)) y 

=b> \y -> y

Is this right?

 

 

 

 

 

 

 

 

 

 

 

 

Something is Fishy

 

(\x -> (\y -> x)) y 

=b> \y -> y

Is this right?

Problem: the free y  in the argument has been captured by \y !



Solution: make sure that all free variables of the argument are di�erent from the

binders in the body.

 

 

 

 

 

 

 

 

 

 

 

 

Capture-Avoiding Substitution

We have to �x our de�nition of β-reduction:

  (\x -> e1) e2   =b>   e1[x := e2]

 

where e1[x := e2]  means “ e1  with all free occurrences of x  replaced with e2 ”

e1  with all free occurrences of x  replaced with e2 , as long as no free variables

of e2  get captured

unde�ned otherwise



 

Formally:

x[x := e]            = e 

y[x := e]            = y            -- assuming x /= y 

(e1 e2)[x := e]      = (e1[x := e]) (e2[x := e]) 

(\x -> e1)[x := e]   = \x -> e1     -- why do we leave `e1` alone? 

(\y -> e1)[x := e]  

  | not (y in FV(e)) = \y -> e1[x := e] 

  | otherise         = undefined    -- wait, but what do we do the

n???

Answer: We leave e1  above alone even though it might contain x , because in \x ->

e1  every occurrence of x  is bound by \x  (hence, there are no free occurrences of x )

 

 

 

 

 

 

 

 

 

 

 

Rewrite Rules of Lambda Calculus



f
 

1. α-step (aka renaming formals)

2. β-step (aka function call)

 

 

 

 

 

 

 

 

 

 

 

 

Semantics: α-Renaming

 

  \x -> e   =a>   \y -> e[x := y] 

    where not (y in FV(e))

 

We can rename a formal parameter and replace all its occurrences in the body

We say that \x -> e  α-steps to \y -> e[x := y]



 

 

Example:

\x -> x   =a>   \y -> y   =a>    \z -> z

All these expressions are α-equivalent

 

 

 

What’s wrong with these?

-- (A) 

\f -> f x    =a>   \x -> x x

Answer: it violates the side-condition for α-renaming that the new formal ( x ) must

not occur freely in the body

-- (B) 

(\x -> \y -> y) y   =a>   (\x -> \z -> z) z

Answer: we should only rename within the body of the abstraction; the second y  is a

free variable, and hence must remain unchanged

-- (C) 

\x -> \y -> x y   =a>    \apple -> \orange -> apple orange

Answer: it’s �ne, but technically it’s two α-steps and not one



 

 

 

 

 

 

 

 

 

 

 

 

 

The Tricky One

 

(\x -> (\y -> x)) y 

=a> (\x -> (\z -> x)) y 

=b> \z -> y

 

 

To avoid getting confused, you can always rename formals, so that di�erent variables

have di�erent names!



 

 

 

 

 

 

 

 

 

 

 

 

Normal Forms

A redex is a λ-term of the form

(\x -> e1) e2

A λ-term is in normal form if it contains no redexes.

 

 

 

 

 

 

 

 



 

 

 

 

 

QUIZ

Which of the following term are not in normal form ?

A. x

B. x y

C. (\x -> x) y

D. x (\y -> y)

E. C and D

Answer: C

 

 

 

 

 

 

 

 

 



 

 

 

Semantics: Evaluation

A λ-term e  evaluates to e'  if

1. There is a sequence of steps

e =?> e_1 =?> ... =?> e_N =?> e'

where each =?>  is either =a>  or =b>  and N >= 0

2. e'  is in normal form

 

 

 

 

 

 

Examples of Evaluation

(\x -> x) apple 

  =b> apple

 



(\f -> f (\x -> x)) (\x -> x) 

  =b> (\x -> x) (\x -> x) 

  =b> \x -> x

 

(\x -> x x) (\x -> x) 

  =b> (\x -> x) (\x -> x) 

  =b> \x -> x

 

 

 

 

 

 

Elsa shortcuts

Named λ-terms:

let ID = \x -> x  -- abbreviation for \x -> x

 

 

To substitute name with its de�nition, use a =d>  step:



ID apple 

  =d> (\x -> x x) apple  -- expand definition 

  =b> apple              -- beta-reduce

 

 

Evaluation:

e1 =*> e2 : e1  reduces to e2  in 0 or more steps

where each step is =a> , =b> , or =d>

e1 =~> e2 : e1  evaluates to e2

What is the di�erence?

 

 

 

 

 

 

 

 

 

 

 

 



Non-Terminating Evaluation

(\x -> x x) (\x -> x x) 

  =b> (\x -> x x) (\x -> x x)

Oops, we can write programs that loop back to themselves…

and never reduce to a normal form!

This combinator is called Ω

 

 

 

 

 

 

What if we pass Ω as an argument to another function?

let OMEGA = (\x -> x x) (\x -> x x) 

 

(\x -> \y -> y) OMEGA

Does this reduce to a normal form? Try it at home!

 

 

 

 



 

 

 

 

 

Programming in λ-calculus

Real languages have lots of features

Booleans

Records (structs, tuples)

Numbers

Functions [we got those]

Recursion

Lets see how to encode all of these features with the λ-calculus.

 

 

 

 

 

 

 

 

 



 

 

 

λ-calculus: Booleans

 

How can we encode Boolean values ( TRUE  and FALSE ) as functions?

 

Well, what do we do with a Boolean b ?

 

 

 

 

 

 

 

 

 

 

 

 

Make a binary choice

if b then e1 else e2



 

 

 

Booleans: API

We need to de�ne three functions

let TRUE  = ??? 

let FALSE = ??? 

let ITE   = \b x y -> ???  -- if b then x else y

such that

ITE TRUE apple banana =~> apple 

ITE FALSE apple banana =~> banana

(Here, let NAME = e  means NAME  is an abbreviation for e )

 

 

 

 

 

 

 

 

 



 

 

 

Booleans: Implementation

let TRUE  = \x y -> x        -- Returns its first argument 

let FALSE = \x y -> y        -- Returns its second argument 

let ITE   = \b x y -> b x y  -- Applies condition to branches 

                             -- (redundant, but improves readability)

 

 

 

 

 

 

 

 

 

 

 

 

Example: Branches step-by-step



eval ite_true: 

  ITE TRUE e1 e2 

  =d> (\b x y -> b    x  y) TRUE e1 e2    -- expand def ITE   

  =b>   (\x y -> TRUE x  y)      e1 e2    -- beta-step 

  =b>     (\y -> TRUE e1 y)         e2    -- beta-step 

  =b>            TRUE e1 e2               -- expand def TRUE 

  =d>     (\x y -> x) e1 e2               -- beta-step 

  =b>       (\y -> e1)   e2               -- beta-step 

  =b> e1

 

 

 

 

 

 

Example: Branches step-by-step

Now you try it!

Can you �ll in the blanks to make it happen?

(http://goto.ucsd.edu:8095/index.html#?demo=ite.lc)



eval ite_false: 

  ITE FALSE e1 e2 

  =d> (\b x y -> b     x  y) FALSE e1 e2   -- expand def ITE   

  =b>   (\x y -> FALSE x  y)       e1 e2   -- beta-step 

  =b>     (\y -> FALSE e1 y)          e2   -- beta-step 

  =b>            FALSE e1 e2               -- expand def FALSE 

  =d>      (\x y -> y) e1 e2               -- beta-step 

  =b>        (\y -> y)    e2               -- beta-step 

  =b> e2

 

 

 

 

 

 

 

 

 

 

 

 

Boolean Operators

Now that we have ITE  it’s easy to de�ne other Boolean operators:



let NOT = \b     -> ??? 

 

let AND = \b1 b2 -> ??? 

 

let OR  = \b1 b2 -> ???

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



let NOT = \b     -> ITE b FALSE TRUE  

 

let AND = \b1 b2 -> ITE b1 b2 FALSE 

 

let OR  = \b1 b2 -> ITE b1 TRUE b2

 

 

Or, since ITE  is redundant:

let NOT = \b     -> b FALSE TRUE  

 

let AND = \b1 b2 -> b1 b2 FALSE 

 

let OR  = \b1 b2 -> b1 TRUE b2

 

Which de�nition to do you prefer and why?

 

 

 

 

 

 

 

 



 

 

 

Programming in λ-calculus

Booleans [done]

Records (structs, tuples)

Numbers

Functions [we got those]

Recursion

 

 

 

 

 

 

 

 

 

 

 

 

λ-calculus: Records

Let’s start with records with two �elds (aka pairs)



What do we do with a pair?

1. Pack two items into a pair, then

2. Get �rst item, or

3. Get second item.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pairs : API

We need to de�ne three functions



let PAIR = \x y -> ???    -- Make a pair with elements x and y  

                          -- { fst : x, snd : y } 

let FST  = \p -> ???      -- Return first element  

                          -- p.fst 

let SND  = \p -> ???      -- Return second element 

                          -- p.snd

such that

FST (PAIR apple banana) =~> apple 

SND (PAIR apple banana) =~> banana

 

 

 

 

 

 

 

 

 

 

 

 

Pairs: Implementation



A pair of x  and y  is just something that lets you pick between x  and y ! (I.e. a

function that takes a boolean and returns either x  or y )

let PAIR = \x y -> (\b -> ITE b x y) 

let FST  = \p -> p TRUE   -- call w/ TRUE, get first value 

let SND  = \p -> p FALSE  -- call w/ FALSE, get second value

 

 

 

 

 

 

 

 

 

 

 

 

Exercise: Triples?

How can we implement a record that contains three values?

let TRIPLE = \x y z -> PAIR x (PAIR y z) 

let FST3  = \t -> FST t 

let SND3  = \t -> FST (SND t) 

let TRD3  = \t -> SND (SND t)



 

 

 

 

 

 

 

 

 

 

 

 

Programming in λ-calculus

Booleans [done]

Records (structs, tuples) [done]

Numbers

Functions [we got those]

Recursion

 

 

 

 

 

 

 



 

 

 

 

 

λ-calculus: Numbers

Let’s start with natural numbers (0, 1, 2, …)

What do we do with natural numbers?

Count: 0 , inc

Arithmetic: dec , + , - , *

Comparisons: == , <= , etc

 

 

 

 

 

 

 

 

 

 

 

 



Natural Numbers: API

We need to de�ne:

A family of numerals: ZERO , ONE , TWO , THREE , …

Arithmetic functions: INC , DEC , ADD , SUB , MULT

Comparisons: IS_ZERO , EQ

Such that they respect all regular laws of arithmetic, e.g.

IS_ZERO ZERO       =~> TRUE 

IS_ZERO (INC ZERO) =~> FALSE 

INC ONE            =~> TWO 

...

 

 

 

 

 

 

 

 

 

 

 

 



Natural Numbers: Implementation

Church numerals: a number N  is encoded as a combinator that calls a function on an

argument N  times

let ONE   = \f x -> f x 

let TWO   = \f x -> f (f x) 

let THREE = \f x -> f (f (f x)) 

let FOUR  = \f x -> f (f (f (f x))) 

let FIVE  = \f x -> f (f (f (f (f x)))) 

let SIX   = \f x -> f (f (f (f (f (f x))))) 

...

 

 

 

 

 

 

 

 

 

 

 

 

QUIZ: Church Numerals



Which of these is a valid encoding of ZERO  ?

A: let ZERO = \f x -> x

B: let ZERO = \f x -> f

C: let ZERO = \f x -> f x

D: let ZERO = \x -> x

E: None of the above

Answer: A

 

 

 

Does this function look familiar?

Answer: It’s the same as FALSE !

 

 

 

 

 

 

 

 



 

 

 

λ-calculus: Increment

-- Call `f` on `x` one more time than `n` does 

let INC   = \n -> (\f x -> f (n f x))

 

 

 

 

 

 

 

 

 

 

 

 

Example:



eval inc_zero : 

  INC ZERO 

  =d> (\n f x -> f (n f x)) ZERO 

  =b> \f x -> f (ZERO f x) 

  =*> \f x -> f x 

  =d> ONE

 

 

 

 

 

 

 

 

 

 

 

 

QUIZ

How shall we implement ADD ?

A. let ADD = \n m -> n INC m

B. let ADD = \n m -> INC n m

C. let ADD = \n m -> n m INC



D. let ADD = \n m -> n (m INC)

E. let ADD = \n m -> n (INC m)

Answer: A

 

 

 

 

 

 

 

 

 

 

 

 

λ-calculus: Addition

--  Call `f` on `x` exactly `n + m` times 

let ADD = \n m -> n INC m

 

 

 

Example:



eval add_one_zero : 

  ADD ONE ZERO 

  =~> ONE

 

 

 

 

 

 

 

 

 

 

 

 

QUIZ

How shall we implement MULT ?

A. let MULT = \n m -> n ADD m

B. let MULT = \n m -> n (ADD m) ZERO

C. let MULT = \n m -> m (ADD n) ZERO

D. let MULT = \n m -> n (ADD m ZERO)

E. let MULT = \n m -> (n ADD m) ZERO



Answer: B or C

 

 

 

 

 

 

 

 

 

 

 

 

λ-calculus: Multiplication

--  Call `f` on `x` exactly `n * m` times 

let MULT = \n m -> n (ADD m) ZERO

 

 

 

Example:

eval two_times_three : 

  MULT TWO ONE 

  =~> TWO



 

 

 

 

 

 

 

 

 

 

 

 

Programming in λ-calculus

Booleans [done]

Records (structs, tuples) [done]

Numbers [done]

Functions [we got those]

Recursion

 

 

 

 

 

 

 



 

 

 

 

 

λ-calculus: Recursion

 

I want to write a function that sums up natural numbers up to n :

\n -> ...          -- 1 + 2 + ... + n

 

 

 

 

 

 

 

 

 

 

QUIZ

Is this a correct implementation of SUM ?



let SUM = \n -> ITE (ISZ n)  

            ZERO  

            (ADD n (SUM (DEC n)))

A. Yes

B. No

 

 

 

 

 

 

 

 

 

 

No!

Named terms in Elsa are just syntactic sugar

To translate an Elsa term to λ-calculus: replace each name with its de�nition

\n -> ITE (ISZ n)  

        ZERO  

        (ADD n (SUM (DEC n))) -- But SUM is not a thing!

 

 



Recursion:

Inside this function I want to call the same function on DEC n

 

 

Looks like we can’t do recursion, because it requires being able to refer to functions by

name, but in λ-calculus functions are anonymous.

Right?

 

 

 

 

 

 

 

 

 

 

 

 

λ-calculus: Recursion

Think again!



 

 

Recursion:

Inside this function I want to call the same function on DEC n

Inside this function I want to call a function on DEC n

And BTW, I want it to be the same function

 

 

Step 1: Pass in the function to call “recursively”

let STEP =  

  \rec -> \n -> ITE (ISZ n)  

                  ZERO  

                  (ADD n (rec (DEC n))) -- Call some rec

 

 

Step 2: Do something clever to STEP , so that the function passed as rec  itself

becomes

\n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))

 

 

 

 



 

 

 

 

 

 

 

 

λ-calculus: Fixpoint Combinator

Wanted: a combinator FIX  such that FIX STEP  calls STEP  with itself as the �rst

argument:

FIX STEP 

=*> STEP (FIX STEP)

 

(In math: a �xpoint of a function f(x) is a point x, such that f(x) = x)

 

 

 

 

Once we have it, we can de�ne:

let SUM = FIX STEP



Then by property of FIX  we have:

SUM =*> STEP SUM -- (1)

eval sum_one: 

  SUM ONE 

  =*> STEP SUM ONE                 -- (1) 

  =d> (\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ONE 

  =b> (\n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ONE  

                                   -- ^^^ the magic happened! 

  =b> ITE (ISZ ONE) ZERO (ADD ONE (SUM (DEC ONE))) 

  =*> ADD ONE (SUM ZERO)           -- def of ISZ, ITE, DEC, ... 

  =*> ADD ONE (STEP SUM ZERO)      -- (1) 

  =d> ADD ONE  

        ((\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ZERO) 

  =b> ADD ONE ((\n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ZERO) 

  =b> ADD ONE (ITE (ISZ ZERO) ZERO (ADD ZERO (SUM (DEC ZERO)))) 

  =b> ADD ONE ZERO 

  =~> ONE

How should we de�ne FIX ???

 

 

 

 

 

 

 



 

 

 

 

 

The Y combinator

Remember Ω?

(\x -> x x) (\x -> x x) 

=b> (\x -> x x) (\x -> x x)

This is self-replcating code! We need something like this but a bit more involved…

 

 

 

 

The Y combinator discovered by Haskell Curry:

let FIX   = \stp -> (\x -> stp (x x)) (\x -> stp (x x))

 

 

How does it work?



eval fix_step: 

  FIX STEP 

  =d> (\stp -> (\x -> stp (x x)) (\x -> stp (x x))) STEP 

  =b> (\x -> STEP (x x)) (\x -> STEP (x x)) 

  =b> STEP ((\x -> STEP (x x)) (\x -> STEP (x x))) 

  --       ^^^^^^^^^^ this is FIX STEP ^^^^^^^^^^^
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