Your Favorite Language

Probably has lots of features:

- Ascignment $(x=x+1)$
- Booleans, integers, characters, strings, ...
- Conditionals
- Loops
- feturn, break, continue
- Functions
- Recurioion

19205

- Reforenees / pointers
- Objects and_classes
- Inheritance
- ...

Which ones can we do without?

What is the smallest universal language?

What is computable?

Before 1930s

Informal notion of an effectively calculable function:

can be computed by a human with pen and paper, following an algorithm

1936: Formalization

What is the smallest universal language?

Alan Turing
The Turing Machine (https://en.wikipedia.org/wiki/Turing_machine)

Alonzo Church
The Lambda Calculus

The Next 700 Languages

Peter Landin

Whatever the next 700 languages turn out to be, they will surely be variants of lambda calculus.

[^0]The Lambda Calculus
Has one feature:

No, really

- Assignment $(x=x, 1)$
- Beoleans, intogers, characters, stinigs, ...
- Conditionals
- Loops
- feturn-broak, comitime
- Functions
- Decurcion - Reforoncec / pointors
- Objects andelasser
- Inheritance
- Reflection

More precisely, only thing you can do is:

- Define a function
- Call a function

Describing a Programming Language

Syntax: what do programs look like?
Semantics: vhat do programs mean?

- Operational semantics: how do programs execute step-by-step?

Syntax: What Programs Look Like

EXPRESSIOW
$\wedge_{e}:=x$
| |x -> e

```
e:= x
    | function(x){ return e}
    | e, (e2)
```

 I (e1 e2)
 Programs are expressions e (also called λ-terms) of one of three kinds:

- Variable
- x, y, z
- Abstraction (aka nameless function definition)
- \x -> e
- x is the formal parameter, e is the body
- "for any x compute e"
- Application (aka function call)
- e1 e2
- e1 is the function, e2 is the argument
- in your favorite language: e1(e2)
(Here each of e, e1, e2 can itself be a variable, abstraction, or application)

Examples

QUIZ
Which of the following terms are sypationsineomeet?
NOT in λ-call?
A. $\backslash(\backslash x->x)->y$
B. $\backslash x->\times x$
C. $\backslash x \rightarrow x(y x)$

$$
e:=x
$$

$1 \backslash x \rightarrow e$
D. A and C

E. all of the above

Correct answer: A

Examples

```
\x -> x -- The identity function
    -- ("for any x compute x")
\x -> (\y -> y) -- A function that returns the identity function
\f -> f (\x -> x) -- A function that applies its argument
    -- to the identity function
```

How do I define a function with two arguments?

- e.g. a function that takes x and y and returns y ?

\x -> (\y -> y)
-- A function that returns the identity function
-- OR: a function that takes two arguments
-- and returns the second one!
((e apple) banana)
$~$
banana

How do I apply a function to two arguments?

- e.g. apply $\backslash \mathrm{x}$-> ($\backslash \mathrm{y}$-> y) to apple and banana?

(((\x -> (\y -> y)) apple) banana) -- first apply to apple,
-- then apply the result to banana

Syntactic Sugar

instead of	we write
\x -> (\y -> (\z -> e))	\x -> \y -> \z -> e
\x -> \y -> \z -> e	\x y z -> e
(($(\mathrm{e} 1 \mathrm{e} 2) \mathrm{e} 3) \mathrm{e} 4)$	e1 e2 e3 e4

\x y -> y -- A function that that takes two arguments
-- and returns the second one...
(\x y -> y) apple banana -- ... applied to two arguments

Semantics: What Programs Mean

How do I "run" / "execute" a λ-term?

Think of middle-school algebra:
-- Simplify expression:

$$
\begin{aligned}
&(x+2) *(3 * x-1) \\
&= \\
& ? ? ?
\end{aligned}
$$

Execute = rewrite step-by-step following simple rules, until no more rules apply
"identity fun" $\backslash z \rightarrow z$

```
Rewrite Rules of Lambda Calculus
    \(\lambda x \rightarrow(\lambda x \rightarrow x)\)
    \(\lambda a \rightarrow(\lambda b \rightarrow b)\)
    1. \(\alpha\)-step (aka renaming formals)
    2. \(\beta\)-step (aka function call)
```

But first we have to talk about scope

Semantics: Scope of a Variable

The part of a program where a variable is visible

- x is the newly introduced variable
- e is the scope of x
- any occurrence of x in $\backslash x->e$ is bound (by the binder $\backslash x$)

For example, x is bound in:

$$
\begin{aligned}
& \backslash x \rightarrow x \\
& \mid x \rightarrow>(\backslash y->x)
\end{aligned}
$$

An occurrence of x in e is free if it's not bound by an enclosing abstraction

For example, x is free in:

```
x y -- no binders at all!
\y -> x y -- no |x binder
(\x -> \y -> y) x -- x is outside the scope of the |x binder;
    -- intuition: it's not "the same" x
```


QUIZ

In the expression ($\mid \mathrm{x}->\mathrm{x}$) x , is x bound or free?
A. bound

B. free
C. first occurrence is bound, second is free \square

Correct answer: \mathbf{C}

Free Variables

An variable x is free in e if there exists a free occurrence of x in e

We can formally define the set of all free variables in a term like so:

```
FV(x) = {x}
FV(\x -> e) = FV(e) \{x}
FV(e1 e2) = FV(e1) + FV(e2)
```


Closed Expressions

If e has no free variables it is said to be closed

- Closed expressions are also called combinators

What is the shortest closed expression?
Answer: \x -> x

Rewrite Rules of Lambda Calculus

1. α-step (aka renaming formals)
2. β-step (aka function call)

Semantics: β-Reduction

```
(\x -> e1) e2 =b> e1[x := e2]
```

where $\mathrm{e} 1[\mathrm{x}:=\mathrm{e} 2]$ means "e1 with all free occurrences of x replaced with e2"

Computation by search-and-replace:

- If you see an abstraction applied to an argument, take the body of the abstraction and replace all free occurrences of the formal by that argument
- We say that $(\backslash x$-> e1) e2 β-steps to $\mathrm{e} 1[\mathrm{x}:=\mathrm{e} 2]$

Examples

```
(\x -> x) apple
=b> apple
```

Is this right? Ask Elsa (http://goto.ucsd.edu:8095/index.html\#?demo=blank.lc)!

```
(\f -> f (\x -> x)) (give apple)
=b> give apple (\x -> x)
```


QUIZ

```
(\x -> (\y -> y)) apple
=b> ???
```

A. apple
B. \y -> apple
C. \x -> apple
D. $\backslash \mathrm{y}->\mathrm{y}$
E. $\backslash x->y$

Correct answer: D.

QUIZ

```
(\x -> x (\x -> x)) apple
=b> ???
```

A. apple (\x -> x)
B. apple (\apple -> apple)
C. apple (\x -> apple)
D. apple
E. $\backslash x$-> x

Correct answer: A.

A Tricky One

```
(\x -> (\y -> x)) y
=b> \y -> y
```

Is this right?

Something is Fishy

```
(\x -> (\y -> x)) y
=b> \y -> y
```

Is this right?
Problem: the free y in the argument has been captured by $\backslash y$!

Solution: make sure that all free variables of the argument are different from the binders in the body.

Capture-Avoiding Substitution

We have to fix our definition of β-reduction:
($\backslash x$-> e1) e2 =b> e1[x := e2]
where $e 1[x:=e 2]$ means " e1 with all free occurrences of $*$ replaced with $e 2$ "

- e1 with all free occurrences of x replaced with e2, as long as no free variables of e2 get captured
- undefined otherwise

Formally:

```
x[x := e] = e
y[x := e] = y -- assuming x /= y
(e1 e2)[x := e] = (e1[x := e]) (e2[x := e])
(\x -> e1)[x := e] = \x -> e1 -- why do we leave `e1` alone?
(\y -> e1)[x := e]
    | not (y in FV(e)) = \y -> e1[x := e]
    | otherise = undefined -- wait, but what do we do the
n???
```

Answer: We leave e1 above alone even though it might contain x , because in $\backslash \mathrm{x}$-> e1 every occurrence of x is bound by $\backslash x$ (hence, there are no free occurrences of x)

Rewrite Rules of Lambda Calculus

1. α-step (aka renaming formals)
2. β-step (aka function call)

Semantics: α-Renaming

```
\x -> e =a> \y -> e[x := y]
    where not (y in FV(e))
```

- We can rename a formal parameter and replace all its occurrences in the body
- We say that $\backslash x$-> e α-steps to $\backslash \mathrm{y}$-> e[x:= y]

Example:
\x -> $x \quad=a>\quad \mid y$-> $y \quad=a>\quad \backslash z->z$
All these expressions are $\boldsymbol{\alpha}$-equivalent

What's wrong with these?
-- (A)
\f -> f x =a> $\mid x$-> x x

Answer: it violates the side-condition for α-renaming that the new formal (x) must not occur freely in the body
-- (B)
($\backslash x$-> \y -> y) y =a> ($\backslash x$-> \z -> z) z

Answer: we should only rename within the body of the abstraction; the second y is a free variable, and hence must remain unchanged
-- (C)
\x -> \y -> x y =a> \apple -> \orange -> apple orange

Answer: it's fine, but technically it's two α-steps and not one

The Tricky One

```
(\x -> (\y -> x)) y
=a> (\x -> (\z -> x)) y
=b> \z -> y
```

To avoid getting confused, you can always rename formals, so that different variables have different names!

Normal Forms

A redex is a λ-term of the form
(\x -> e1) e2
A λ-term is in normal form if it contains no redexes.

QUIZ

Which of the following term are not in normal form ?
A. x
B. $x y$
C. $(\backslash x->x) y$
D. $x(\backslash y->y)$
E. C and D

Answer: C

Semantics: Evaluation

A λ-term e evaluates to e^{\prime} if

1. There is a sequence of steps
e =?> e_1 =?> ... =?> e_N =?> e'
where each $=$? $>$ is either $=a>$ or $=b>$ and $N>=0$
2. e^{\prime} is in normal form

Examples of Evaluation

```
(\x -> x) apple =b> apple
```

```
(\f -> f (\x -> x)) (\x -> x)
    =b> (\x -> x) (\x -> x)
    =b> \x -> x
(\x -> x x) (\x -> x)
    =b> (\x -> x) (\x -> x)
    =b> \x -> x
```


Elsa shortcuts

Named λ-terms:

```
let ID = \x -> x -- abbreviation for |x -> x
```

To substitute name with its definition, use a =d> step:

ID apple
=d> (\x -> x x) apple -- expand definition
=b> apple -- beta-reduce

Evaluation:

- e1 =*> e2: e1 reduces to e2 in 0 or more steps
- where each step is =a> , =b> , or =d>
- e1 =~> e2: e1 evaluates to e2

What is the difference?

Non-Terminating Evaluation

($\backslash \mathrm{x}$-> x x) ($\mid \mathrm{x}$-> x x)
=b> ($\backslash \mathrm{x}$-> x x) ($\backslash \mathrm{x}$-> x x)

Oops, we can write programs that loop back to themselves...
and never reduce to a normal form!
This combinator is called Ω

What if we pass Ω as an argument to another function?
let OMEGA $=(\backslash x \rightarrow x \times)(\backslash x \rightarrow x x)$
(\x -> \y -> y) OMEGA
Does this reduce to a normal form? Try it at home!

Programming in λ-calculus

Real languages have lots of features

- Booleans
- Records (structs, tuples)
- Numbers
- Functions [we got those]
- Recursion

Lets see how to encode all of these features with the λ-calculus.

λ-calculus: Booleans

How can we encode Boolean values (TRUE and FALSE) as functions?

Well, what do we do with a Boolean b?

Make a binary choice

- if b then e1 else e2

Booleans: API

We need to define three functions

```
let TRUE = ???
let FALSE = ???
let ITE = \b x y -> ??? -- if b then x else y
```

such that

ITE TRUE apple banana =~> apple
ITE FALSE apple banana =~> banana
(Here, let NAME = e means NAME is an abbreviation for e)

Booleans: Implementation

```
let TRUE = \x y -> x -- Returns its first argument
let FALSE = \x y -> y -- Returns its second argument
let ITE = \b x y -> b x y -- Applies condition to branches
-- (redundant, but improves readability)
```

Example: Branches step-by-step

```
eval ite_true:
ITE TRUE e1 e2
=d> (\b x y -> b x y) TRUE e1 e2 -- expand def ITE
=b> (\x y -> TRUE x y) e1 e2 -- beta-step
=b> (\y -> TRUE e1 y) e2 -- beta-step
=b> TRUE e1 e2 -- expand def TRUE
=d> (\x y -> x) e1 e2 -- beta-step
=b> (\y -> e1) e2 -- beta-step
=b> e1
```


Example: Branches step-by-step

Now you try it!
Can you fill in the blanks to make it happen?
(http://goto.ucsd.edu:8095/index.html\#?demo=ite.lc)

```
eval ite_false:
ITE FALSE e1 e2
=d> (\b x y -> b x y) FALSE e1 e2 -- expand def ITE
=b> (\x y -> FALSE x y) e1 e2 -- beta-step
=b> (\y -> FALSE e1 y) e2 -- beta-step
=b> FALSE e1 e2 -- expand def FALSE
=d> (\x y -> y) e1 e2 -- beta-step
=b> (\y -> y) e2 -- beta-step
=b> e2
```


Boolean Operators

Now that we have ITE it's easy to define other Boolean operators:

$$
\begin{aligned}
& \text { let NOT }=\backslash \mathrm{b} \quad->? ? ? \\
& \text { let } \mathrm{AND}=\backslash \mathrm{b} 1 \mathrm{~b} 2->? ? ? \\
& \text { let } \mathrm{OR}=\backslash \mathrm{b} 1 \mathrm{~b} 2->? ? ?
\end{aligned}
$$

```
let NOT = \b -> ITE b FALSE TRUE
let AND = \b1 b2 -> ITE b1 b2 FALSE
let OR = \b1 b2 -> ITE b1 TRUE b2
```

Or, since ITE is redundant:

```
let NOT = \b -> b FALSE TRUE
let AND = \b1 b2 -> b1 b2 FALSE
```

let $\mathrm{OR}=\ \mathrm{~b} 1 \mathrm{~b} 2$-> b1 TRUE b2

Which definition to do you prefer and why?

Programming in λ-calculus

- Booleans [done]
- Records (structs, tuples)
- Numbers
- Functions [we got those]
- Recursion

λ-calculus: Records

Let's start with records with two fields (aka pairs)

What do we do with a pair?

1. Pack two items into a pair, then
2. Get first item, or
3. Get second item.

Pairs:API

We need to define three functions

```
let PAIR = \x y -> ??? -- Make a pair with elements x and y
    -- { fst : x, snd : y }
let FST = \p -> ??? -- Return first element
    -- p.fst
let SND = \p -> ??? -- Return second element
    -- p.snd
```

such that

FST (PAIR apple banana) =~> apple
SND (PAIR apple banana) =~> banana

Pairs: Implementation

A pair of x and y is just something that lets you pick between x and y ! (I.e. a function that takes a boolean and returns either x or y)

```
let PAIR = \x y -> (\b -> ITE b x y)
let FST = \p -> p TRUE -- call w/ TRUE, get first value
let SND = \p -> p FALSE -- call w/ FALSE, get second value
```


Exercise: Triples?

How can we implement a record that contains three values?

```
let TRIPLE = \x y z -> PAIR x (PAIR y z)
let FST3 = \t -> FST t
let SND3 = \t -> FST (SND t)
let TRD3 = \t -> SND (SND t)
```


Programming in λ-calculus

- Booleans [done]
- Records (structs, tuples) [done]
- Numbers
- Functions [we got those]
- Recursion

λ-calculus: Numbers

Let's start with natural numbers ($0,1,2, \ldots$)
What do we do with natural numbers?

- Count: 0, inc
- Arithmetic: dec , +, - , *
- Comparisons: ==, <= , etc

Natural Numbers: API

We need to define:

- A family of numerals: ZERO, ONE , TWO, THREE , ...
- Arithmetic functions: INC , DEC , ADD , SUB , MULT
- Comparisons: IS_ZERO, EQ

Such that they respect all regular laws of arithmetic, e.g.

```
IS_ZERO ZERO =~> TRUE
IS_ZERO (INC ZERO) =~> FALSE
INC ONE =~> TWO
```


Natural Numbers: Implementation

Church numerals: a number N is encoded as a combinator that calls a function on an argument N times

```
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))
let FOUR = \f x -> f (f (f (f x)))
let FIVE = \f x -> f (f (f (f (f x))))
let SIX = \f x -> f (f (f (f (f (f x)))))
```

QUIZ: Church Numerals

Which of these is a valid encoding of ZERO ?

- A: let ZERO = \f x -> x
- B: let ZERO $=\backslash f \times$-> f
- C: let ZERO $=\backslash \mathrm{f} \times$-> f x
- D: let ZERO = x -> x
- E: None of the above

Answer: A

Does this function look familiar?
Answer: It's the same as FALSE!

λ-calculus: Increment

```
-- Call `f` on `x` one more time than `n` does
let INC = \n -> (\f x -> f ( }n\textrm{f}x)\mathrm{ )
```

Example:

```
eval inc_zero :
    INC ZERO
    =d> (\n f x -> f (n f x)) ZERO
    =b> \f x -> f(ZERO f x)
    =*> \f x -> f x
    =d> ONE
```


QUIZ

How shall we implement ADD ?
A. let $A D D=\backslash n \mathrm{~m} \rightarrow \mathrm{n}$ INC m
B. let $A D D=\backslash n \mathrm{~m} \rightarrow \mathrm{INC} \mathrm{n} \mathrm{m}$
C. Let $A D D=\backslash n m->n m$ INC
D. let ADD = \n m -> n (m INC)
E. let $A D D=\ n \mathrm{~m}$-> n (INC m)

Answer: A
λ-calculus: Addition
-- Call `f` on `x` exactly `n + m` times
let $A D D=\ n \mathrm{~m}$-> n INC m

Example:

QUIZ

How shall we implement MULT ?
A. let MULT $=\backslash n \mathrm{~m} \rightarrow \mathrm{n}$ ADD m
B. let MULT $=\backslash n \mathrm{~m} \rightarrow \mathrm{n}$ (ADD m) ZERO
C. let MULT $=$ \n m \rightarrow m (ADD n) ZERO
D. let MULT $=$ \n m -> n (ADD m ZERO)
E. let MULT $=$ \n m -> (n ADD m) ZERO

λ-calculus: Multiplication
 -- Call `f` on ‘x`exactly`n * m` times
 let MULT $=$ \n m -> n (ADD m) ZERO

Example:
eval two_times_three :
MULT TWO ONE
=~> TWO

Programming in λ-calculus

- Booleans [done]
- Records (structs, tuples) [done]
- Numbers [done]
- Functions [we got those]
- Recursion

λ-calculus: Recursion

I want to write a function that sums up natural numbers up to n :

```
\n -> ... -- 1 + 2 + ... + n
```


QUIZ

Is this a correct implementation of SUM ?
let $\operatorname{SUM}=\backslash \mathrm{n}$-> ITE (ISZ n)
ZERO
(ADD $n($ SUM (DEC n)))
A. Yes
B. No

No!

- Named terms in Elsa are just syntactic sugar
- To translate an Elsa term to λ-calculus: replace each name with its definition

```
\n -> ITE (ISZ n)
    ZERO
    (ADD n (SUM (DEC n))) -- But SUM is not a thing!
```


Recursion:

- Inside this function I want to call the same function on DEC n

Looks like we can't do recursion, because it requires being able to refer to functions by name, but in λ-calculus functions are anonymous.

Right?

λ-calculus: Recursion

Think again!

Recursion:

- Inside this function I want to call the same function on DEC n
- Inside this function I want to call a function on DEC n
- And BTW, I want it to be the same function

Step 1: Pass in the function to call "recursively"
let STEP =
\rec -> \n -> ITE (ISZ n)
ZERO
(ADD n (rec (DEC n))) -- Call some rec

Step 2: Do something clever to STEP, so that the function passed as rec itself becomes
\n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))

λ-calculus: Fixpoint Combinator

Wanted: a combinator FIX such that FIX STEP calls STEP with itself as the first argument:

FIX STEP
=*> STEP (FIX STEP)
(In math: a fixpoint of a function $f(x)$ is a point x, such that $f(x)=x$)

Once we have it, we can define:
let SUM = FIX STEP

Then by property of FIX we have:

```
SUM =*> STEP SUM -- (1)
eval sum_one:
    SUM ONE
    =*> STEP SUM ONE -- (1)
    =d> (\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ONE
    =b> (\n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ONE
                            -- ^^^ the magic happened!
    =b> ITE (ISZ ONE) ZERO (ADD ONE (SUM (DEC ONE)))
    =*> ADD ONE (SUM ZERO) -- def of ISZ, ITE, DEC, ...
    =*> ADD ONE (STEP SUM ZERO) -- (1)
    =d> ADD ONE
            ((\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ZERO)
    =b> ADD ONE ((\n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ZERO)
    =b> ADD ONE (ITE (ISZ ZERO) ZERO (ADD ZERO (SUM (DEC ZERO))))
    =b> ADD ONE ZERO
    =~> ONE
```

How should we define FIX ???

The Y combinator

Remember Ω ?

```
(\x -> x x) (\x -> x x)
=b> (\x -> x x) (\x -> x x)
```

This is self-replcating code! We need something like this but a bit more involved...

The Y combinator discovered by Haskell Curry:
let FIX $=\backslash \operatorname{stp}->(\backslash x->\operatorname{stp}(x \times))(\backslash x->\operatorname{stp}(x \times))$

How does it work?

```
eval fix step:
FIX STEP
=d> (\stp -> (\x -> stp (x x)) (\x -> stp (x x))) STEP
=b> (\x -> STEP (x x)) (\x -> STEP (x x))
=b> STEP ((\x -> STEP (x x)) (\x -> STEP (x x)))
-- ^^^^^^^^^^^ this is FIX STEP ^^^^^^^^^^^^
```

That's all folks!
(https://ucsd-cse130.github.io/sp19/feed.xml) (https://twitter.com/ranjitjhala) (https://plus.google.com/u/o/104385825850161331469)
(https://github.com/ranjitjhala)
Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher (http://lucumr.pocoo.org), suggest improvements here (https://github.com/ucsd-progsys/liquidhaskell-blog/).

[^0]: Peter Landin, 1966

