Midterm on Friday

Higher-Order Functions

Plan for this week
Last week:

- user-defined data types
- and how to manipulate them using pattern matching and recursion
- how to make recursive functions more efficient with tail recursion

This week:

- code reuse with higher-order functions (HOFs)
- some useful HOFs: map, filter, and fold

Recursion is good...

- Recursive code mirrors recursive data
- Base constructor -> Base case
- Inductive constructor -> Inductive case (with recursive call)
- But it can get kinda repetitive!

Example: evens

Let's write a function evens :
-- evens [] ==> []
-- evens $[1,2,3,4]==>[2,4]$

```
evens :: [Int] -> [Int]
evens [] = ...
evens (x:xs) = ...
```


Example: four-letter words

Let's write a function fourChars :
-- fourChars [] ==> []
-- fourChars ["i","must", "do","work"] ==> ["must","work"]
fourChars :: [String] -> [String]
fourChars [] = ...
fourChars (x:xs) = ...

Yikes, Most Code is the Same

Lets rename the functions to foo:

```
foo [] = []
foo (x:xs)
    | x mod 2 == 0 = x : foo xs
    | otherwise = foo xs
foo [] = []
foo (x:xs)
    | length x == 4 = x : foo xs
    | otherwise = foo xs
```

Only difference is condition

- $x \bmod 2==0$ vs length $x==4$

Moral of the day

D.R.Y. Don't Repeat Yourself!

Can we

- reuse the general pattern and
- substitute in the custom condition?

HOFs to the rescue!

General Pattern

- expressed as a higher-order function
- takes customizable operations as arguments

Specific Operation

- passed in as an argument to the HOF

The filter Pattern
General Pattern

- HOF filter
- Recursively traverse list and pick out elements that satisfy a predicate

Specific Operations

- Predicates isEven and isFour

$$
\lambda x \cdot x+1
$$

```
filter f [] = []
filter f (x:xs)
| f x = x : filter f xs
| otherwise = filter f xs
```

evens where isEven x	$=x$ filter isEven

```
fourChars = filter isFour
    where
    isFour x = length x == 4
```

filter instances
Avoid duplicating code!

Let's talk about types

-- evens $[1,2,3,4]==>[2,4]$
evens :: [Int] -> [Int]
evens xs = filter isEven xs

where

isEven :: Int -> Bool
isEven $x=x$ `mod` $2=0$
filter :: ???
-- fourChars ["i", "must", "do", "work"] ==> ["must", "work"]
fourChars :: [String] -> [String]
fourChars xs = filter isFour xs
where
isFour :: String -> Bool
isFour x = length $x==4$
filter :: ???

So what's the type of filter?

```
filter :: (Int -> Bool) -> [Int] -> [Int] -- ???
filter :: (String -> Bool) -> [String] -> [String] -- ???
```

- It does not care what the list elements are
- as long as the predicate can handle them
- It's type is polymorphic (generic) in the type of list elements
-- For any type `a`
-- if you give me a predicate on `a`s
-- and a list of `a`s,
-- I'll aive you back a list of `o`s
filter :: (a -> Bool) -> [a] -> [a]

Example: all caps

Lets write a function shout :
-- shout [] ==> []
-- shout ['h','e','l','l','o'] ==> ['H','E','L','L','0']

```
shout :: [Char] -> [Char]
shout [] = ...
shout (x:xs) = ...
```


Example: squares

Lets write a function squares:
-- squares [] ==> []
-- squares $[1,2,3,4]$ ==> [1,4,9,16]

```
squares :: [Int] -> [Int]
squares [] = ...
squares (x:xs) = ...
```


Yikes, Most Code is the Same

Lets rename the functions to foo:
-- shout
foo [] = []
foo (x:xs) = toUpper x : foo xs
-- squares
foo [] = []
foo (x:xs) $=(x * x)$: foo xs

Lets refactor into the common pattern
pattern = ...

The "map" pattern

```
shout [] = []
shout (x:xs) = toUpper x : shout xs
```

```
squares [] = []
squares \((x: x s)=(x * x)\) : squares \(x s\)
```

```
map f [] = []
map f (x:xs) = f x : map f xs
```

The map Pattern
General Pattern

- HOF map
- Apply a transformation f to each element of a list

Specific Operations

- Transformations toUpper and \x -> x * x

```
map f [] = []
map f (x:xs) = f x : map f xs
```

Lets refactor shout and squares

```
squares = map ...
```

$\operatorname{map} f[]$	$=[]$
$\operatorname{map} f(x: x s)$	$=f x: \operatorname{map} f x s$

shout $=$ map ($\backslash x$-> toUpper x)

```
squares = map (\x -> x*x)
```

map instances

QUIZ

What is the type of map?
map f [] = []
map $f(x: x s)=f x$: map $f x s$
(A) (Char -> Char) -> [Char] -> [Char] x
(B) (Int -> Int) -> [Int] -> [Int] X
(C) $(a->a)$ \rightarrow [a] $\rightarrow[a]<$
(D) (a $->$ b) $->$ [a] $->[b]<$
(E) (a -> b) -> [c] -> [d]
-- For any types `a` and `b`
-- if you give me a transformation from `a` to `b`
-- and a list of `a`s,
-- I'll give you back a list of `b`s
map :: (a -> b) -> [a] -> [b]

Type says it all!

- The only meaningful thing a function of this type can do is apply its first argument to elements of the list
- Hoogle it!

Things to try at home:

- can you write a function map' : : (a -> b) -> [a] -> [b] whose behavior is different from map?
- can you write a function map' : : (a -> b) -> [a] -> [b] such that map' f xs returns a list whose elements are not in map f xs ?

QUIZ

What is the value of quiz?

```
map :: (a -> b) -> [a] -> [b]
        (|ut,|nt)->\operatorname{ln}t
quiz = map (\(x, y) -> x + y) [1, 2, 3]
(A) \([2,4,6]\)
(B) \([3,5]\)
(C) Syntax Error
(D) Type Error
(E) None of the above
```


Don't Repeat Yourself

Benefits of factoring code with HOFs:

- Reuse iteration pattern
- think in terms of standard patterns
- less to write
- easier to communicate
- Avoid bugs due to repetition

Recall: length of a list

-- len [] ==> 0
-- len ["carne", "asada"] ==> 2
len :: [a] -> Int
len [] = 0
len (x:xs) = 1 + len xs

Recall: summing a list

-- sum [] ==> 0
-- $\operatorname{sum}[1,2,3]==>6$
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) $=x+\operatorname{sum} x s$

Example: string concatenation
Let's write a function cat :
-- cat [] ==> ""
-- cat ["carne", "asada", "torta"] ==> "carneasadatorta"
cat :: [String] -> String
cat [] = ...
cat (x:xs) = ...

Can you spot the pattern?
-- len
foo [] $=0$
foo $(x: x s)=1+$ foo $x s$
-- sum
foo [] $=0$
foo $(x: x s)=x+$ foo $x s$

- - cat
foo [] = ""
foo (x:xs) $=x++$ foo $x s$
pattern = ...

The "fold-right" pattern

$\begin{array}{ll} \text { len }[] & =0 \\ \text { len }(x: x s) & =1+\text { len } x s \end{array}$	$\begin{array}{ll} \operatorname{sum}[] & =0 \\ \operatorname{sum}(x: x s) & =x+\operatorname{sum} x s \end{array}$	$\begin{array}{ll} \text { cat }[] & =" " \\ \text { cat }(x: x s) & =x++ \text { sum } x s \end{array}$

$$
\begin{array}{ll}
\text { foldr f b }[] & =b \\
\text { foldr } f \text { b }(x: x s) & =f x(f o l d r f b x s)
\end{array}
$$

The foldr Pattern
General Pattern

- Recurse on tail
- Combine result with the head using some binary operation

```
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)
```

Let's refactor sum, len and cat:
sum = foldr
cat $=$ foldr.. . ..
len $=$ foldr

Factor the recursion out!

$$
\begin{array}{ll}
\text { foldr f b }[] & =b \\
\text { foldr } f \text { b }(x: x s)=f \times(\text { foldr f b xs })
\end{array}
$$

$$
\text { len }=\text { foldr }(\backslash x \text { n } \rightarrow 1+n) 0
$$

$$
\text { sum }=\text { foldr }(\backslash x n \rightarrow x+n) 0
$$

$$
\text { cat }=\text { foldr (} \backslash x \text { s }->\times \text { ++ n) """ }
$$

foldr instances
You can write it more clearly as

```
sum = foldr (+) 0
cat = foldr (++) ""
```


QUIZ

What does this evaluate to?

```
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)
quiz = foldr (:) [] [1,2,3]
(A) Type error
(B) \([1,2,3]\)
(C) \([3,2,1]\)
(D) \([[3],[2],[1]]\)
(E) [[1],[2],[3]]
```

```
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)
foldr (:) [] [1,2,3]
    ==> (:) 1 (foldr (:) [] [2, 3])
    ==> (:) 1 ((:) 2 (foldr (:) [] [3]))
    ==> (:) 1 ((:) 2 ((:) 3 (foldr (:) [] [])))
    ==> (:) 1 ((:) 2 ((:) 3 []))
    == 1 : (2 : (3 : []))
    == [1,2,3]
```

$$
\left.\left.\left(\int\left(b \circ p x_{1}\right) \circ p x_{2}\right) \circ p x_{3}\right) \circ p x_{4}\right)
$$

$$
\begin{aligned}
& \left(\left(\binom{\left.\left.\left.\left.x_{1} \text { op } x_{2}\right) \circ p x_{3}\right) \circ p x_{4}\right) \circ p b\right)}{\left.\left(x_{1} \text { op }\left(x_{2} \circ p\left(\begin{array}{lll}
x_{3} \circ p\left(x_{4} \text { op } b\right.
\end{array}\right)\right)\right)\right\rangle}\right.\right.
\end{aligned}
$$

$$
\left(x_{1} \circ p\left(x_{2} \circ p\left(x_{3} \circ p\left(x_{4} \circ p b\right)\right)\right)\right.
$$

The "fold-right" pattern
foldr f b [x1, x2, x3, x4]
$==>\mathrm{f} x 1$ (foldr $\mathrm{f} b[\mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4]$)
$==>f \times 1$ (f x2 (foldr f b [x3, x4]))

$==>\mathrm{f} \times 1(\mathrm{f} \times 2(\mathrm{f} \times 3(\mathrm{f} \times 4$ (foldr $\mathrm{f} b[])))$
$==>\mathrm{f}_{1}(\mathrm{f} \times 2(f \times 3(f \times 4 \mathrm{~b})))$
Accumulate the values from the right
For example:

```
foldr (+) 0 [1, 2, 3, 4]
    ==> 1 + (foldr (+) 1 [2, 3, 4])
    ==> 1 + (2 + (foldr (+) 0 [3, 4]))
    =>> 1 + (2 + (3 + (foldr (+) 0 [4])))
    ==> 1 + (2 + (3 + (4 + (foldr (+) 0 []))))
    =>> 1 + (2 + (3 + (4 + 0)))
```


QUIZ

What is the most general type of foldr ?
foldr f b [] $=b$
foldr f b (x:xs) $=\mathrm{f} x$ (foldr f bxs)
(A) (a -> a -> a) -> a -> [a] -> a
(B) (a -> a -> b) -> a -> [a] -> b
(C) (a -> b -> a) -> b -> [a] -> b
(D) (a -> b -> b) -> b -> [a] -> b
(E) (b -> a -> b) -> b -> [a] -> b

Is foldr tail recursive?

What about tail-recursive versions?

Let's write tail-recursive sum !

```
sumTR :: [Int] -> Int
sumTR = ...
```

Lets run sumTR to see how it works

```
sumTR [1,2,3]
    ==> helper 0 [1,2,3]
    ==> helper 1 [2,3] -- 0 + 1 ==> 1
    ==> helper 3 [3] -- 1 + 2 ==> 3
    ==> helper 6 [] -- 3 + 3 ==> 6
```

 ==> 6
 Note: helper directly returns the result of recursive call!

