AwN : Mcdteom o FRIDAY
Higher-Order Functions Hw3 —ld

Plan for this week _ oppt-of "vecord

Last week: oneé - af N wnion'" or "umv
« user-defined data types recuive |ist l Lt

o and how to manipulate them using pattern matching and recursion

« how to make recursive functions more efficient with tail recursion
-

This week:
o code reuse with higher-order functions (HOFs)

o some useful HOFs: map, filter,and fold

—

Recursion is good...

e Recursive code mirrors recursive data

o Base constructor -> Base case

o Inductive constructor -> Inductive case (with recursive call)

 But it can get kinda repetitive!

Example: evens

Let’s write a function evens :

-- evens [] ==> []
-- evens [1,2,3,4] ==> [2,4]

evens :: [Int] -> [Int]
evens [] = ...
evens (X:xs)

Example: four-letter words

Let’s write a function fourChars:

-- fourChars [] ==> []
-- fourChars ["1", "must", "do", "work"] ==> ["must", "work"]

fourChars :: [String] -> [String]
fourChars [] = ...
fourChars (x:xs) = ...

Yikes, Most Code is the Same

Lets rename the functions to foo:

foo [] =[]
foo (x:xs)
| x mod 2 == = x : foo xs
| otherwise = foo xs
foo [] =[]
foo (x:xs)
| length x == 4 = x : foo xs
| otherwise = foo xs

Only difference is condition

e x mod 2 == 0 vs length x ==

Moral of the day

D.R.Y. Don’t Repeat Yourself!

—_—

Can we

« reuse the general pattern and
e substitute in the custom condition?

—_—

0 the rescue!

General Pattern

o expressed as a higher-order function

« takes customizable operations as arguments

Specific Operation

 passed in as an argument to the HOF

fllee (\x—> % 'mod 2 >

The “filter” pattern

/7 @U& (\ X A?Huc:?—‘t)

evens [] = [l fourChars [] = [l

evens (x:xs) fourfhars (x:xs)
|| x mod 2 == 0= x : evens Xs | [Length x == 4| = x : fourChars xs
| otherwise = evens Xs | otherwise = fourChars xs

[]

filter ()]

filter f (x:xs)

| f x = x : filter f xs
| otherwise = filter f xs

The filter Pattern
General Pattern

e HOF filter
e Recursively traverse list and pick out elements that satisfy a predicate

Specific Operations

e Predicates isEven and isFour

\N9%. X+

filter f [] []

filter f (x:xs)

| f x = x : filter f xs
| otherwise = filter f xs
evens = filter isEven fourChars = filter isFour
where where
isEven x = x mod 2 == 0 isFour x = length x ==

filter instances

Avoid duplicating code!

Let’s talk about types

-- evens [1,2,3,4] ==> [2,4]
evens :: [Int] -> [Int]
evens xs = filter isEven xs

where
isEven :: Int -> Bool
isEven x = X ‘mod’ 2 == 0

filter :: 227

n n

-- fourChars ["1", "must”, "do", "work"] ==> ["must"”, "work"]

fourChars :: [String] -> [String]
fourChars xs = filter isFour xs

where
isFour :: String -> Bool
isFour x = Tlength x == 4

filter :: 227

So what’s the type of filter ?

filter :: (Int -> Bool) -> [Int] -> [Int] -- 2??

filter :: (String -> Bool) -> [String] -> [String] -- ???

o It does not care what the list elements are
o aslong as the predicate can handle them

« It’s type is polymorphic (generic) in the type of list elements

-- For any type ‘a’

-- 1f you give me a predicate on ‘a’s
-- and a list of ‘a’s,

-- I'll give you-back—alistof ‘a's

filter :: (a -> Bool) -> [a] -> [a] J

Example: all caps

Lets write a function shout:

-- shout [] ==> []
- Shout [’hl’ le”lll, ’l” Iol] ==> [’HI’ IE” ’LI, IL” IOI]

shout :: [Char] -> [Char]
shout [] = ...
shout (x:xs) = ...

Example: squares

Lets write a function squares:

- squares [] ==> []
- squares [1,2,3,4] ==> [1,4,9,16]

squares :: [Int] -> [Int]

squares [] = ...

squares (X:Xxs) = ...

Yikes, Most Code is the Same

Lets rename the functions to foo:

-- shout

foo [] =[]

foo (x:xs) = toUpper x : foo xs
-- squares

foo [] =[]

foo (x:xs) = (x * x) : foo xs

Lets refactor into the common pattern

pattern = ...

The “map” pattern

shout []
shout (x:xs)

[] squares []
toUpper x : shout xs squares (x:xs)

[]

(x*kx) : squares Xs

map f []
map f (x:xs)

[]

f x : map f xs

The map Pattern
General Pattern

« HOF map

e Apply a transformation f to each element of a list
Specific Operations

e Transformations toUpper and \x -> x * x

map f [] []
map f (x:xs) = f x : map f xs

Lets refactor shout and squares

shout = map ...
squares = map ...
map f [] = []
map f (x:xs) = f x : map f xs
shout = map (\x -> tolUpper x) squares = map (\x => xxx)

map instances

QUIZ

What is the type of map ?

map f []
map f (x:xs)

[]

f x :map f xs

(A) (Char -> Char) -> [Char] -> [Char] ;(
(B) (Int -> Int) -> [Int] -> [Int] X

@(a -> a) -> [a] -> [a] &—

(®) @ > b) > [a] > [b] =—

(E) (@ -> b) -> [c] -> [d]

-- For any types ‘a’ and ‘b

-- 1f you give me a transformation from ‘a’ to ‘b’
-- and a list of ‘a’s,

-- I'll give you back a list of 'b’s

map :: (a -> b) -> [a] -> [b]

Type says it all!
» The only meaningful thing a function of this type can do is apply its first argument to elements of the list

» Hoogle it!

Things to try at home:
e canyou write a function map' :: (a -> b) -> [a] -> [b] whose behavior is different from map ?

e canyou write a function map' :: (a -> b) -> [a] -> [b] suchthat map' f xs returns alist whose

elements are notin map f xs?

QUIZ

What is the value of quiz?

map :: (a -> b) -> [a] -> [b]

(Int, 1) Int
quiz = map (\(x, y) -> x +y) [1, 2, 3]

) -
a) [2, 4, 6] D‘ntj
(B) [3, 5]
(C) Syntax Error
(D) Type Error

(E) None of the above

Don’t Repeat Yourself

Benefits of factoring code with HOFs:
¢ Reuse iteration pattern
o think in terms of standard patterns
o less to write

o easier to communicate

o Avoid bugs due to repetition

Recall: length of a list

- len [] ==> 0

- len ["carne”, "asada"] ==> 2
len :: [a] -> Int
len [] =0

len (x:xs) = 1 + len xs

Recall: summing a list

- sum [] ==> 0

- sum [1,2,3] ==> 6
sum :: [Int] -> Int
sum [] =0
sum (X:XS) = X + sum XS

Example: string concatenation

Let’s write a function cat :

- cat [] ==>""
- cat ["carne", "asada", "torta"] ==> "carneasadatorta"
cat :: [String] -> String
cat [] = ...
cat (x:xs) = ...

Can you spot the pattern?

- len
foo [] =0
foo (x:xs) =1 + foo xs
-- sum
foo [] =0
foo (x:xs) = x + foo xs
-- cat
foo [] =
foo (x:xs) = x ++ foo xs

pattern = ...

The “fold-right” pattern

len [] =
len (x:xs) =

0 sum []
1 + len xs || sum (x:xs)

0

cat []

X + sum xs || cat (x:xs)

- n

X 4+ sum XS

The foldr Pattern

General Pattern

e Recurse on tail

foldr f b []
foldr f b (x:xs)

b
f

x (foldr f b xs)

o Combine result with the head using some binary operation

foldr f b []
foldr f b (x:xs)

b
f x (foldr f b xs)

Let’s refactor sum, len and cat:

sum = foldr ...
cat = foldr ...
len = foldr ...

Factor the recursion out!

foldr f b [] =b
foldr f b (x:xs) = f x (foldr f b xs)

len = foldr (A\x n => 1 + n) 0
sum = foldr (\x n => x + n) 0
cat = foldr (\x s => x ++ n) “”

foldr instances

You can write it more clearly as

sum = foldr (+) 0O

cat = foldr (++) ""

QUIZ

What does this evaluate to?

foldr f b []
foldr f b (x:xs)

b
f x (foldr f b xs)

quiz = foldr (:) [] [1,2,3]
(A) Type error

(B) [1,2,3]

(©) [3,2,1]

(D) [[3],[2],[1]]

(E) [[1].[2],[3]]

fbl[]
f b (x:xs)

b
f x (foldr f b xs)

[1[1,2,3]

1 (foldr (:) [1 [2, 31)

1 ((:) 2 (foldr (:) []1 [31))

1 ((:) 2 ((:) 3 (foldr () [1 [N
1((:) 2 () 3010

(23 [N

1,2,3]

.
N N N N

7C, op %La)op d)op Zu)r b)

AN s
The “fold-right” pattern ‘\{{\‘V

foldr f b [x1, x2, x3, x4]
==> f x1 (foldr f b [x2, x3, x4])
==> f x1 (f x2 (foldr f b [x3, x4]))
==> f x1 (f x2 (f x3 (foldr f b [x4])))
==> f x1 (f x2 (f x3 (f x4 (foldr f b []))))
==> f x1 (f x2 (f x3 (t x4 b)))

(v

Accumulate the values from the right

For example:

foldr (+) 0 [1, 2, 3, 4]
==> 1 + (foldr (+) 1 [2, 3, 4])
==> 1 + (2 + (foldr (+) 0 [3, 4]))
==> 1+ (2 + (3 + (foldr (+) 0 [4])))
==> 1+ (2 + (3 + (4 + (foldr (+) 0 [1))))
==> 1+ (2 + (3 + (4 +0)))

QUIZ

What is the most general type of foldr ?

b
f x (foldr f b xs)

foldr f b []
foldr f b (x:xs)

(A) (a -> a ->a) ->a -> [a] -> a
(B) (a ->a ->b) ->a ->[a] -> b
(C)(a ->b ->a) ->b ->[a] -> b
(D) (a -> b ->b) ->b ->[a] -> b

(E) (b ->a ->b) ->b ->[a] -> b

Is foldr tail recursive?

What about tail-recursive versions?

Let’s write tail-recursive sum!

sumTR :: [Int] -> Int
sumTR = ...

Lets run sumTR to see how it works

sumTR [1,2,3]
==> helper 0 [1,2,3]

==> helper 1 [2,3] -0+ 1==>1
==> helper 3 [3] -- 1+ 2==13
==> helper 6 [] -- 3+ 3==>6
==> 6

Note: helper directly returns the result of recursive call!

