
Higher-Order Functions

Plan for this week
Last week:

user-de�ned data types

and how to manipulate them using pattern matching and recursion

how to make recursive functions more e�cient with tail recursion

This week:

code reuse with higher-order functions (HOFs)

some useful HOFs: map , filter , and fold

 

 

 

 

 

 

 

ANN Midterm on FRIDAY
HW3 fold

each of record
one of Union or sum

recursive List



 

 

 

Recursion is good…
Recursive code mirrors recursive data

Base constructor -> Base case

Inductive constructor -> Inductive case (with recursive call)

But it can get kinda repetitive!

 

 

 

 

 

 

 

 

 

Example: evens
Let’s write a function evens :



-- evens []        ==> [] 

-- evens [1,2,3,4] ==> [2,4]

evens       :: [Int] -> [Int] 

evens []     = ...  

evens (x:xs) = ...

 

 

 

 

 

 

Example: four-letter words
Let’s write a function fourChars :

-- fourChars [] ==> [] 

-- fourChars ["i","must","do","work"] ==> ["must","work"]

fourChars :: [String] -> [String] 

fourChars []     = ...  

fourChars (x:xs) = ...



 

 

 

 

 

 

 

 

 

Yikes, Most Code is the Same
Lets rename the functions to foo :

foo []            = [] 

foo (x:xs) 

  | x mod 2 == 0  = x : foo xs 

  | otherwise     =     foo xs 

 

foo []            = [] 

foo (x:xs) 

  | length x == 4 = x : foo xs 

  | otherwise     =     foo xs

Only di�erence is condition



x mod 2 == 0  vs length x == 4

 

 

 

 

 

 

 

 

 

Moral of the day
 

D.R.Y. Don’t Repeat Yourself!

 

Can we

reuse the general pattern and

substitute in the custom condition?



 

 

 

 

 

 

 

 

 

HOFs to the rescue!
General Pattern

expressed as a higher-order function

takes customizable operations as arguments

Speci�c Operation

passed in as an argument to the HOF

 

 

 

O



 

 

 

The “�ilter” pattern

The filter  Pattern

General Pattern

HOF filter

Recursively traverse list and pick out elements that satisfy a predicate

Speci�c Operations

Predicates isEven  and isFour

q
filter 1 7 x mod 2

fifer fix leychx le

es en

O

IX K t I



filter  instances

Avoid duplicating code!

 

 

 

 

 

 

 

 

 



Let’s talk about types
-- evens [1,2,3,4] ==> [2,4] 

evens :: [Int] -> [Int] 

evens xs = filter isEven xs 

  where 

    isEven :: Int -> Bool 

    isEven x  =  x `mod` 2 == 0

filter :: ???

 

 

 

 

 

-- fourChars ["i","must","do","work"] ==> ["must","work"] 

fourChars :: [String] -> [String] 

fourChars xs = filter isFour xs 

  where 

    isFour :: String -> Bool 

    isFour x  =  length x == 4

filter :: ???



 

 

 

 

 

 

So what’s the type of filter ?

filter :: (Int -> Bool) -> [Int] -> [Int] -- ??? 

 

filter :: (String -> Bool) -> [String] -> [String] -- ???

 

It does not care what the list elements are

as long as the predicate can handle them

It’s type is polymorphic (generic) in the type of list elements

 

-- For any type `a` 

--   if you give me a predicate on `a`s 

--   and a list of `a`s, 

--   I'll give you back a list of `a`s  

filter :: (a -> Bool) -> [a] -> [a]



 

 

 

 

 

 

Example: all caps
Lets write a function shout :

-- shout []                    ==> [] 

-- shout ['h','e','l','l','o'] ==> ['H','E','L','L','O'] 

shout :: [Char] -> [Char] 

shout []     = ... 

shout (x:xs) = ... 

 

 

 

 

 

 



Example: squares
Lets write a function squares :

-- squares []        ==> [] 

-- squares [1,2,3,4] ==> [1,4,9,16] 

squares :: [Int] -> [Int] 

squares []     = ... 

squares (x:xs) = ... 

 

 

 

 

 

 

 

 

 

Yikes, Most Code is the Same
Lets rename the functions to foo :



-- shout 

foo []     = [] 

foo (x:xs) = toUpper x : foo xs 

 

-- squares 

foo []     = [] 

foo (x:xs) = (x * x)   : foo xs

 

 

Lets refactor into the common pattern

pattern = ...

 

 

 

 

 

 

The “map” pattern



The map  Pattern

General Pattern

HOF map

Apply a transformation f  to each element of a list

Speci�c Operations

Transformations toUpper  and \x -> x * x

 

 

 

 

map f []     = [] 

map f (x:xs) = f x : map f xs

Lets refactor shout  and squares



shout   = map ... 

 

squares = map ...

 

 

 

 

map  instances

 

 

 

 

 

 



 

 

 

QUIZ
What is the type of map ?

map f []     = [] 

map f (x:xs) = f x : map f xs

(A) (Char -> Char) -> [Char] -> [Char]

(B) (Int -> Int) -> [Int] -> [Int]

(C) (a -> a) -> [a] -> [a]

(D) (a -> b) -> [a] -> [b]

(E) (a -> b) -> [c] -> [d]

 

 

 

 

 

 

x
x

8 E



 

 

 

-- For any types `a` and `b` 

--   if you give me a transformation from `a` to `b` 

--   and a list of `a`s, 

--   I'll give you back a list of `b`s  

map :: (a -> b) -> [a] -> [b]

 

Type says it all!

The only meaningful thing a function of this type can do is apply its �rst argument to elements of the list

Hoogle it!

 

Things to try at home:

can you write a function map' :: (a -> b) -> [a] -> [b]  whose behavior is di�erent from map ?

can you write a function map' :: (a -> b) -> [a] -> [b]  such that map' f xs  returns a list whose

elements are not in map f xs ?



 

 

 

 

 

 

 

 

 

QUIZ
What is the value of quiz ?

map :: (a -> b) -> [a] -> [b] 

 

quiz = map (\(x, y) -> x + y) [1, 2, 3]

(A) [2, 4, 6]

(B) [3, 5]

(C) Syntax Error

(D) Type Error

(E) None of the above

IntInt Int

w
int



 

 

 

 

 

 

 

 

 

 

Don’t Repeat Yourself
Bene�ts of factoring code with HOFs:

Reuse iteration pattern

think in terms of standard patterns

less to write

easier to communicate

Avoid bugs due to repetition

Did

B Tmz
Est Easiest



 

 

 

 

 

 

 

 

 

Recall: length of a list
-- len []      ==> 0 

-- len ["carne","asada"] ==> 2 

len :: [a] -> Int 

len []     = 0 

len (x:xs) = 1 + len xs

 

 

 

 

 



Recall: summing a list
-- sum []      ==> 0 

-- sum [1,2,3] ==> 6 

sum :: [Int] -> Int 

sum []     = 0 

sum (x:xs) = x + sum xs

 

 

 

 

 

Example: string concatenation
Let’s write a function cat :

-- cat [] ==> "" 

-- cat ["carne","asada","torta"] ==> "carneasadatorta" 

cat :: [String] -> String 

cat []     = ... 

cat (x:xs) = ...



 

 

 

 

 

 

Can you spot the pattern?
-- len 

foo []     = 0 

foo (x:xs) = 1 + foo xs 

 

-- sum 

foo []     = 0 

foo (x:xs) = x + foo xs 

 

-- cat 

foo []     = "" 

foo (x:xs) = x ++ foo xs

 

pattern = ...



 

 

 

 

 

 

 

 

 

The “fold-right” pattern

The foldr  Pattern

General Pattern

Recurse on tail

Combine result with the head using some binary operation



 

 

 

 

foldr f b []     = b 

foldr f b (x:xs) = f x (foldr f b xs)

 

 

Let’s refactor sum , len  and cat :

sum = foldr ...  ... 

 

cat = foldr ...  ... 

 

len = foldr ...  ...

Factor the recursion out!

 

 

 

 

 

 



 

 

 

foldr  instances

You can write it more clearly as

sum = foldr (+) 0 

 

cat = foldr (++) ""

 

 

 



 

 

 

 

 

 

QUIZ
What does this evaluate to?

foldr f b []     = b 

foldr f b (x:xs) = f x (foldr f b xs) 

 

quiz = foldr (:) [] [1,2,3]

(A) Type error

(B) [1,2,3]

(C) [3,2,1]

(D) [[3],[2],[1]]

(E) [[1],[2],[3]]



 

 

 

 

 

 

 

 

 

foldr f b []     = b 

foldr f b (x:xs) = f x (foldr f b xs) 

 

foldr (:) [] [1,2,3] 

  ==> (:) 1 (foldr (:) [] [2, 3]) 

  ==> (:) 1 ((:) 2 (foldr (:) [] [3])) 

  ==> (:) 1 ((:) 2 ((:) 3 (foldr (:) [] []))) 

  ==> (:) 1 ((:) 2 ((:) 3 [])) 

  ==  1 : (2 : (3 : [])) 

  ==  [1,2,3]

 

 

 

 



 

 

 

 

 

The “fold-right” pattern
foldr f b [x1, x2, x3, x4] 

  ==> f x1 (foldr f b [x2, x3, x4]) 

  ==> f x1 (f x2 (foldr f b [x3, x4])) 

  ==> f x1 (f x2 (f x3 (foldr f b [x4]))) 

  ==> f x1 (f x2 (f x3 (f x4 (foldr f b [])))) 

  ==> f x1 (f x2 (f x3 (f x4 b)))

Accumulate the values from the right

For example:

foldr (+) 0 [1, 2, 3, 4] 

  ==> 1 + (foldr (+) 1 [2, 3, 4]) 

  ==> 1 + (2 + (foldr (+) 0 [3, 4])) 

  ==> 1 + (2 + (3 + (foldr (+) 0 [4]))) 

  ==> 1 + (2 + (3 + (4 + (foldr (+) 0 [])))) 

  ==> 1 + (2 + (3 + (4 + 0)))

b op xD op Xz op Xs op Xa

ki OP kaop Nz op Xu op b
fold

2C op Xz op 3 op y op b

Rfddr

a oooo



 

 

 

 

 

 

 

 

 

QUIZ
What is the most general type of foldr ?

foldr f b []     = b 

foldr f b (x:xs) = f x (foldr f b xs)

(A) (a -> a -> a) -> a -> [a] -> a

(B) (a -> a -> b) -> a -> [a] -> b

(C) (a -> b -> a) -> b -> [a] -> b

(D) (a -> b -> b) -> b -> [a] -> b

(E) (b -> a -> b) -> b -> [a] -> b



 

 

 

 

 

 

 

 

 

 

Is foldr  tail recursive?

 

 

 

 

 

 

 

 

 

What about tail-recursive versions?



Let’s write tail-recursive sum !

sumTR :: [Int] -> Int 

sumTR = ...

 

 

 

 

 

 

 

 

 

Lets run sumTR  to see how it works

sumTR [1,2,3] 

  ==> helper 0 [1,2,3] 

  ==> helper 1   [2,3]    -- 0 + 1 ==> 1 

  ==> helper 3     [3]    -- 1 + 2 ==> 3 

  ==> helper 6      []    -- 3 + 3 ==> 6  

  ==> 6

Note: helper  directly returns the result of recursive call!


