
Datatypes and Recursion

Plan for this week
Last week:

built-in data types

base types, tuples, lists (and strings)

writing functions using pattern matching and recursion

This week:

u

y
init
cheer 4 Z

C 2 cat

2 3,4

user-de�ned data types

and how to manipulate them using pattern matching and recursion

more details about recursion

Representing complex data
We’ve seen:

base types: Bool , Int , Integer , Float

some ways to build up types: given types T1, T2

functions: T1 -> T2

tuples: (T1, T2)

lists: [T1]

Algebraic Data Types: a single, powerful technique for building up types to represent complex data

Lets you de�ne your own data types

Tuples and lists are special cases

Building data types

T IntlBoolKhar
ICT T
l T Tk
l T IT T

Three key ways to build complex types/values:

1. Product types (each-of): a value of T contains a value of T1 and a value of T2

2. Sum types (one-of): a value of T contains a value of T1 or a value of T2

3. Recursive types: a value of T contains a sub-value of the same type T

Product types
Tuples can do the job but there are two problems…

Int String

ooo

t

deadlineDate :: (Int, Int, Int)

deadlineDate = (2, 4, 2019)

deadlineTime :: (Int, Int, Int)

deadlineTime = (11, 59, 59)

-- | Deadline date extended by one day

extension :: (Int, Int, Int) -> (Int, Int, Int)

extension = ...

Can you spot them?

1. Verbose and unreadable
A type synonym for T : a name that can be used interchangeably with T

type Date = (Int, Int, Int)

type Time = (Int, Int, Int)

deadlineDate :: Date

deadlineDate = (2, 4, 2019)

deadlineTime :: Time

deadlineTime = (11, 59, 59)

-- | Deadline date extended by one day

extension :: Date -> Date

extension = ...

2. Unsafe
We want this to fail at compile time!!!

extension deadlineTime

Solution: construct two di�erent datatypes

data Date = Date Int Int Int

data Time = Time Int Int Int

-- constructor^ ^parameter types

deadlineDate :: Date

deadlineDate = Date 2 4 2019

deadlineTime :: Time

deadlineTime = Time 11 59 59

Record syntax

Haskell’s record syntax allows you to name the constructor parameters:

Instead of

data Date = Date Int Int Int

you can write:

data Date = Date

 { month :: Int

 , day :: Int

 , year :: Int

 }

then you can do:

deadlineDate = Date 2 4 2019

dealineMonth = month deadlineDate -- yikes, use field name as a function

I
Fifa.ie 7ut siut ilut sDat
Dear
mom 1h Dat Int

Building data types

Three key ways to build complex types/values:

1. Product types (each-of): a value of T contains a value of T1 and a value of T2 [done]

2. Sum types (one-of): a value of T contains a value of T1 or a value of T2

3. Recursive types: a value of T contains a sub-value of the same type T

Example: NanoMarkdown

C

f Ind

a

Suppose I want to represent a text document with simple markup

Each paragraph is either:

plain text (String)

heading: level and text (Int and String)

list: ordered? and items (Bool and [String])

I want to store all paragraphs in a list

doc = [(1, "Notes from 130") -- Lvl 1 heading

 , "There are two types of languages:" -- Plain text

 , (True, ["those people complain about", "those no one uses"]) -- Ordered list

]

But this does not type check!!!

Lol 21017
UL Club

Sum Types
Solution: construct a new type for paragraphs that is a sum (one-of) the three options!

Each paragraph is either:

plain text (String)

heading: level and text (Int and String)

list: ordered? and items (Bool and [String])

data Paragraph -- ^ 3 constructors, w/ different parameters

 = PText String -- ^ text : plain string

 | PHeading Int String -- ^ heading: level and text (`Int` and `String`)

 | PList Bool [String] -- ^ list : ordered? and items (`Bool` and `[String]`)

QUIZ

Term

data Paragraph

 = PText String

 | PHeading Int String

 | PList Bool [String]

What is the type of Text "Hey there!" ? i.e. How would GHCi reply to:

>:t (PText "Hey there!")

A. Syntax error

B. Type error

C. PText

D. String

E. Paragraph

PText hey
I

t

I lTi F o

Constructing datatypes
data T

 = C1 T11 ... T1k

 | C2 T21 ... T2l

 | ...

 | Cn Tn1 ... Tnm

T is the new datatype

C1 .. Cn are the constructors of T

A value of type T is

either C1 v1 .. vk with vi :: T1i

or C2 v1 .. vl with vi :: T2i

or …

or Cn v1 .. vm with vi :: Tni

You can think of a T value as a box:

either a box labeled C1 with values of types T11 .. T1k inside

or a box labeled C2 with values of types T21 .. T2l inside

or …

or a box labeled Cn with values of types Tn1 .. Tnm inside

One-of Types

Apply a constructor = pack some values into a box (and label it)

PText "Hey there!"

put "Hey there!" in a box labeled PText

PHeading 1 "Introduction"

put 1 and "Introduction" in a box labeled PHeading

Boxes have di�erent labels but same type (Paragraph)

The Paragraph Type

with example values:

The Paragraph Type

QUIZ
data Paragraph

 = PText String

 | PHeading Int String

 | PList Bool [String]

Dat Di

What would GHCi say to

>:t [PHeading 1 "Introduction", Pext "Hey there!"]

A. Syntax error

B. Type error

C. Paragraph

D. [Paragraph]

E. [String]

Example: NanoMD

T

data Paragraph

 = PText String

 | PHeading Int String

 | PList Bool [String]

Now I can create a document like so:

doc :: [Paragraph]

doc = [PHeading 1 "Notes from 130"

 , PText "There are two types of languages:"

 , PList True ["those people complain about", "those no one uses"])

]

Now I want convert documents in to HTML.

I need to write a function:

html :: Paragraph -> String

html p = ??? -- depends on the kind of paragraph!

How to tell what’s in the box?

Look at the label!

Pattern matching
Pattern matching = looking at the label and extracting values from the box

we’ve seen it before

but now for arbitrary datatypes

html :: Paragraph -> String

html (PText str) = ... -- It's a plain text! Get string

html (PHeading lvl str) = ... -- It's a heading! Get level and string

html (PList ord items) = ... -- It's a list! Get ordered and items

O Fish
I
Rod tr

html :: Paragraph -> String

html (PText str) -- It's a plain text! Get string

 = unlines [open "p", str, close "p"]

html (PHeading lvl str) -- It's a heading! Get level and string

 = let htag = "h" ++ show lvl

 in unwords [open htag, str, close htag]

html (PList ord items) -- It's a list! Get ordered and items

 = let ltag = if ord then "ol" else "ul"

 litems = [unwords [open "li", i, close "li"] | i <- items]

 in unlines ([open ltag] ++ litems ++ [close ltag])

Dangers of pattern matching (1)
html :: Paragraph -> String

html (PText str) = ...

html (PList ord items) = ...

What would GHCi say to:

html (PHeading 1 "Introduction")

Dangers of pattern matching (2)
html :: Paragraph -> String

html (PText str) = unlines [open "p", str, close "p"]

html (PHeading lvl str) = ...

html (PHeading 0 str) = html (PHeading 1 str)

html (PList ord items) = ...

What would GHCi say to:

html (PHeading 0 "Introduction")

Dangers of pattern matching
Beware of missing and overlapped patterns

GHC warns you about overlapped patterns

GHC warns you about missing patterns when called with -W (use :set -W in GHCi)

Pattern-Match Expression

o

Everything is an expression?

We’ve seen: pattern matching in equations

Actually, pattern-match is also an expression

html :: Paragraph -> String

html p = case p of

 PText str -> unlines [open "p", str, close "p"]

 PHeading lvl str -> ...

 PList ord items -> ...

The code we saw earlier was syntactic sugar
D

html (C1 x1 ...) = e1

html (C2 x2 ...) = e2

html (C3 x3 ...) = e3

is just for humans, internally represented as a case-of expression

html p = case p of

 (C1 x1 ...) -> e1

 (C2 x2 ...) -> e2

 (C3 x3 ...) -> e3

QUIZ
What is the type of

let p = Text "Hey there!"

in case p of

 PText str -> str

 PHeading lvl _ -> lvl

 PList ord _ -> ord

A. Syntax error

B. Type error

C. String

D. Paragraph

E. Paragraph -> String

iaawas i

Pattern matching expression: typing
The case expression

case e of

 pattern1 -> e1

 pattern2 -> e2

 ...

 patternN -> eN

has type T if

each e1 … eN has type T

e has some type D

each pattern1 … patternN is a valid pattern for D

i.e. a variable or a constructor of D applied to other patterns

The expression e is called the match scrutinee

QUIZ
What is the type of

let p = Text "Hey there!"

in case p of

 PText _ -> 1

 PHeading _ _ -> 2

 PList _ _ -> 3

A. Syntax error

B. Type error

C. Paragraph

D. Int

E. Paragraph -> Int

Building data types

