```
e0, e1, e2 :: Expr
e0 = Add (Num 4.0) (Num 2.9)
e1 = Sub (Num 3.78) (Num 5.92)
e2 = Mul e0 e1
```

EXERCISE: Expression Evaluator
Write a function to evaluate an expression.
-- >>> eval (Add (Num 4.0) (Num 2.9))
-- 6.9
eval :: Expr -> Float
eval e = ???
data Expr $=$ Num Double 1 Add Expr Expl

Recursion is...

Building solutions for big problems from solutions for sub-problems

- Base case: what is the simplest version of this problem and how do I solve it?
- Inductive strategy: how do break down this problem int sub-problems?
- Inductive case: how do I solve the problerh given the solutions for subproblems?

Lists

 $[1,2,3]$Lists aren't built-in! They are an algebraic data type like any other:
data List
= Nil $1 \quad 2$-- ^ base constructor
| Cons Int List -- ^ inductive constructor

- List [1, 2, 3] is represented as Cons 1 (Cons 2 (Cons 3 Nil$)$)
- Built-in list constructors [] and (:) are just fancy syntax for Nil and Cons

$$
1:(2:(3:[])) \quad \operatorname{Cons} 1(\operatorname{Cons} 2(\operatorname{Cons} 3 N i l))
$$

Functions on lists follow the same general strategy
length :: List -> Int
length Nil $=0$-- base case
length (Cons _ xs) = 1 + length xs -- inductive case

EXERCISE: Appending Lists

What is the right inductive strategy for appending two lists?

```
-- >>> append (Cons 1 (Cons 2 (Cons 3 Nil))) (Cons 4 (Cons 5 (Cons
6 ~ N i l ) ) )
-- (Cons 1 (Cons 2 (Cons 3 (Cons 4 (Cons 5 (Cons 6 Nil))))))
append :: List -> List -> List
append xs ys = ??
```


Trees

Lists are unary trees with elements stored in the nodes:

Lists are unary trees
data List $=$ Nil | Cons Int List
How do we represent binary trees with elements stored in the nodes?

Binary trees with data at nodes
(A) data Tree = Leaf | Node Int Tree
(B) data Tree = Leaf | Node Tree Tree
(C) data Tree = Leaf | Node Int Tree Tree
(D) data Tree = Leaf Int | Node Tree Tree
(E) data Tree = Leaf Int | Node Int Tree Tree

Binary trees with data at nodes
data Tree = Leaf | Node Int Tree Tree
t1234 = Node 1
(Node 2 (Node 3 Leaf Leaf) Leaf)
(Node 4 Leaf Leaf)

Functions on trees

```
depth :: Tree -> Int
depth t = ??
```


QUIZ: Binary trees II

What is a Haskell datatype for binary trees with elements stored in the leaves?

Binary trees with data at leaves
(A) data Tree $=$ Leaf $X \mid$ Node Int Tree
(B) data Tree = Leaf $/$ / Node Tree Tree
(C) data Tree = Leaf X | Node Int Tree Tree
(D) data Tree $=$ Leaf (Int)| Node ${ }_{\mu}$ Tree Tree
(E) data Tree $=$ Leaf Int | Node (Hit)Tree Tree

data Tree = Leaf Int | Node Tree Tree
t12345 = Node
(Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))
(Node (Leaf 4) (Leaf 5))

Why use Recursion?

1. Often far simpler and cleaner tholos

- But not always...

2. Structure often forced by recursive data
3. Forces you $t /$ factor code into reusable units (recursive functions) $\searrow_{\text {maplieduce }} \searrow_{\text {Bis }}$ dato

Why not use Recursion?

1. Slow
2. Can cause stack overflow

Example: factorial

fac :: Int -> Int
fac n
$\mid n<=1=1$
| otherwise
fac ($n-1$)
not TR
def $f a c(n)$:
$\begin{aligned} r e s & =1 \\ i & =1\end{aligned}$
while ($i \leq n$): res $=$ res *i

$$
i=i+1
$$

return res
Lets see how fac 4 is evaluated:
Sac 100
<fac 4>

$$
\begin{array}{ll}
==><4 *<\text { fac } 3 \gg & \text { - recursively call `fact 3` } \\
==><4 *<3 *<\text { fac 2>>> } & -- \\
==><4 *<3 *<2 *<\text { recursively call `fact } 2 ` \\
==><4 *<3 *<2 * 1 \ggg & -- \\
==><4 *<3 * 2 \gg & -- \\
==><4 * 6> & \text { multiply } 2 \text { to result } \\
==>24
\end{array}
$$

Each function call <> allocates a frame on the call stack

- expensive
- the stack has a finite size

Can we do recursion without allocating stack frames?

