
e0, e1, e2 :: Expr

e0 = Add (Num 4.0)  (Num 2.9)

e1 = Sub (Num 3.78) (Num 5.92)

e2 = Mul e0 e1

EXERCISE: Expression Evaluator
Write a function to evaluate an expression.

-- >>> eval (Add (Num 4.0)  (Num 2.9))

-- 6.9

eval :: Expr -> Float

eval e = ???

Recursion is…

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/03-datatypes...

32 of 46 2/2/21, 8:56 AM

MIDTERM ON

MONDAY 218

data pr quay gµ
am Monday 218

t
8am Tue 219



Building solutions for big problems from solutions for sub-problems

Base case: what is the simplest version of this problem and how do I solve it?

Inductive strategy: how do I break down this problem into sub-problems?

Inductive case: how do I solve the problem given the solutions for

subproblems?

Lists
Lists aren’t built-in! They are an algebraic data type like any other:

data List

= Nil -- ^ base constructor

| Cons Int List -- ^ inductive constructor

List [1, 2, 3]  is represented as Cons 1 (Cons 2 (Cons 3 Nil))

Built-in list constructors []  and (:)  are just fancy syntax for Nil  and

Cons

Functions on lists follow the same general strategy:

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/03-datatypes...

33 of 46 2/2/21, 8:56 AM

or O
D

ti
1 2,3

Iff
D

I 2 3 c Conseccons2cons3nilD



length :: List -> Int

length Nil = 0 -- base case

length (Cons _ xs) = 1 + length xs  -- inductive case

EXERCISE: Appending Lists
What is the right inductive strategy for appending two lists?

-- >>> append (Cons 1 (Cons 2 (Cons 3 Nil))) (Cons 4 (Cons 5 (Cons 

6 Nil)))

-- (Cons 1 (Cons 2 (Cons 3 (Cons 4 (Cons 5 (Cons 6 Nil))))))

append :: List -> List -> List

append xs ys = ??

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/03-datatypes...

34 of 46 2/2/21, 8:56 AM



Trees
Lists are unary trees with elements stored in the nodes:

Lists are unary trees

data List = Nil | Cons Int List

How do we represent binary trees with elements stored in the nodes?

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/03-datatypes...

35 of 46 2/2/21, 8:56 AM

has one child

a

NO CHILDRE

0

let



Binary trees with data at nodes

QUIZ: Binary trees I
What is a Haskell datatype for binary trees with elements stored in the nodes?

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/03-datatypes...

36 of 46 2/2/21, 8:56 AM

s
I I

r O t O

1 O O O

o o data Tree t
Node but freettifreet
I Leaf



Binary trees with data at nodes

(A) data Tree = Leaf | Node Int Tree

(B) data Tree = Leaf | Node Tree Tree

(C) data Tree = Leaf | Node Int Tree Tree

(D) data Tree = Leaf Int | Node Tree Tree

(E) data Tree = Leaf Int | Node Int Tree Tree

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/03-datatypes...

37 of 46 2/2/21, 8:56 AM



Binary trees with data at nodes

data Tree = Leaf | Node Int Tree Tree

t1234 = Node 1

          (Node 2 (Node 3 Leaf Leaf) Leaf) 

          (Node 4 Leaf Leaf)

Functions on trees

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/03-datatypes...

38 of 46 2/2/21, 8:56 AM



depth :: Tree -> Int

depth t = ??

QUIZ: Binary trees II
What is a Haskell datatype for binary trees with elements stored in the leaves?

Binary trees with data at leaves

(A) data Tree = Leaf | Node Int Tree

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/03-datatypes...

39 of 46 2/2/21, 8:56 AM

x x

x

x



(B) data Tree = Leaf | Node Tree Tree

(C) data Tree = Leaf | Node Int Tree Tree

(D) data Tree = Leaf Int | Node Tree Tree

(E) data Tree = Leaf Int | Node Int Tree Tree

data Tree = Leaf Int | Node Tree Tree

t12345 = Node

          (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))

          (Node (Leaf 4) (Leaf 5))

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/03-datatypes...

40 of 46 2/2/21, 8:56 AM

too i

treemay

agree



Why use Recursion?
1. Often far simpler and cleaner than loops

But not always…

2. Structure often forced by recursive data

3. Forces you to factor code into reusable units (recursive functions)

Why not use Recursion?
1. Slow

2. Can cause stack overflow

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/03-datatypes...

41 of 46 2/2/21, 8:56 AM

wa

O

maplredufjg.at

O
taitrecarynon

HI
festfoop



Example: factorial
fac :: Int -> Int

fac n

| n <= 1 = 1

| otherwise = n * fac (n - 1)

Lets see how fac 4  is evaluated:

<fac 4>

==> <4 * <fac 3>> -- recursively call `fact 3`

==> <4 * <3 * <fac 2>>> --   recursively call `fact 2`

==> <4 * <3 * <2 * <fac 1>>>> --     recursively call `fact 1`

==> <4 * <3 * <2 * 1>>> --     multiply 2 to result 

==> <4 * <3 * 2>> --   multiply 3 to result

==> <4 * 6> -- multiply 4 to result

==> 24

Each function call <>  allocates a frame on the call stack

expensive

the stack has a finite size

Can we do recursion without allocating stack frames?

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/03-datatypes...

42 of 46 2/2/21, 8:56 AM

i


