
e0, e1, e2 :: Expr

e0 = Add (Num 4.0)  (Num 2.9)

e1 = Sub (Num 3.78) (Num 5.92)

e2 = Mul e0 e1

EXERCISE: Expression Evaluator
Write a function to evaluate an expression.

-- >>> eval (Add (Num 4.0)  (Num 2.9))

-- 6.9

eval :: Expr -> Float

eval e = ???

Recursion is…
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Building solutions for big problems from solutions for sub-problems

Base case: what is the simplest version of this problem and how do I solve it?

Inductive strategy: how do I break down this problem into sub-problems?

Inductive case: how do I solve the problem given the solutions for

subproblems?

Lists
Lists aren’t built-in! They are an algebraic data type like any other:

data List

= Nil -- ^ base constructor

| Cons Int List -- ^ inductive constructor

List [1, 2, 3]  is represented as Cons 1 (Cons 2 (Cons 3 Nil))

Built-in list constructors []  and (:)  are just fancy syntax for Nil  and

Cons

Functions on lists follow the same general strategy:
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length :: List -> Int

length Nil = 0 -- base case

length (Cons _ xs) = 1 + length xs  -- inductive case

EXERCISE: Appending Lists
What is the right inductive strategy for appending two lists?

-- >>> append (Cons 1 (Cons 2 (Cons 3 Nil))) (Cons 4 (Cons 5 (Cons 

6 Nil)))

-- (Cons 1 (Cons 2 (Cons 3 (Cons 4 (Cons 5 (Cons 6 Nil))))))

append :: List -> List -> List

append xs ys = ??
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Trees
Lists are unary trees with elements stored in the nodes:

Lists are unary trees

data List = Nil | Cons Int List

How do we represent binary trees with elements stored in the nodes?
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Binary trees with data at nodes

QUIZ: Binary trees I
What is a Haskell datatype for binary trees with elements stored in the nodes?
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Binary trees with data at nodes

(A) data Tree = Leaf | Node Int Tree

(B) data Tree = Leaf | Node Tree Tree

(C) data Tree = Leaf | Node Int Tree Tree

(D) data Tree = Leaf Int | Node Tree Tree

(E) data Tree = Leaf Int | Node Int Tree Tree
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Binary trees with data at nodes

data Tree = Leaf | Node Int Tree Tree

t1234 = Node 1

          (Node 2 (Node 3 Leaf Leaf) Leaf) 

          (Node 4 Leaf Leaf)

Functions on trees
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depth :: Tree -> Int

depth t = ??

QUIZ: Binary trees II
What is a Haskell datatype for binary trees with elements stored in the leaves?

Binary trees with data at leaves

(A) data Tree = Leaf | Node Int Tree
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(B) data Tree = Leaf | Node Tree Tree

(C) data Tree = Leaf | Node Int Tree Tree

(D) data Tree = Leaf Int | Node Tree Tree

(E) data Tree = Leaf Int | Node Int Tree Tree

data Tree = Leaf Int | Node Tree Tree

t12345 = Node

          (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))

          (Node (Leaf 4) (Leaf 5))
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Why use Recursion?
1. Often far simpler and cleaner than loops

But not always…

2. Structure often forced by recursive data

3. Forces you to factor code into reusable units (recursive functions)

Why not use Recursion?
1. Slow

2. Can cause stack overflow
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Example: factorial
fac :: Int -> Int

fac n

| n <= 1 = 1

| otherwise = n * fac (n - 1)

Lets see how fac 4  is evaluated:

<fac 4>

==> <4 * <fac 3>> -- recursively call `fact 3`

==> <4 * <3 * <fac 2>>> --   recursively call `fact 2`

==> <4 * <3 * <2 * <fac 1>>>> --     recursively call `fact 1`

==> <4 * <3 * <2 * 1>>> --     multiply 2 to result 

==> <4 * <3 * 2>> --   multiply 3 to result

==> <4 * 6> -- multiply 4 to result

==> 24

Each function call <>  allocates a frame on the call stack

expensive

the stack has a finite size

Can we do recursion without allocating stack frames?
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