
Higher-Order Functions

Plan for this week
Last week:

user-defined data types

manipulating data-types with pattern matching and recursion

how to make recursive functions more e!cient with tail recursion

The long arc of history
Pattern matching is a very old PL idea …

Variants of LISP from 1970 by Fred McBride (https://personal.cis.strath.ac.uk

/conor.mcbride/FVMcB-PhD.pdf)

… but will finally be added to Python 3.10

https://www.python.org/dev/peps/pep-0622/

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

1 of 35 2/9/21, 8:58 AM

def make_point_3d(pt):

 match pt:

 case (x, y):

return Point3d(x, y, 0)

 case (x, y, z):

return Point3d(x, y, z)

 case Point2d(x, y):

return Point3d(x, y, 0)

 case Point3d(_, _, _):

return pt

 case _:

raise TypeError("not a point we support")

Plan for this week
Last week:

user-defined data types

manipulating data-types with pattern matching and recursion

how to make recursive functions more e!cient with tail recursion

This week:

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

2 of 35 2/9/21, 8:58 AM

code reuse with higher-order functions (HOFs)

some useful HOFs: map , filter , and fold

Recursion is good…
Recursive code mirrors recursive data

Base constructor -> Base case

Inductive constructor -> Inductive case (with recursive call)

But it can get kinda repetitive!

Example: evens

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

3 of 35 2/9/21, 8:58 AM

Let’s write a function evens :

-- evens [] ==> []

-- evens [1,2,3,4] ==> [2,4]

evens :: [Int] -> [Int]

evens [] = ...

evens (x:xs) = ...

Example: four-letter words
Let’s write a function fourChars :

-- fourChars [] ==> []

-- fourChars ["i","must","do","work"] ==> ["must","work"]

fourChars :: [String] -> [String]

fourChars [] = ...

fourChars (x:xs) = ...

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

4 of 35 2/9/21, 8:58 AM

I 1

F
raff

boy

Yikes! Most Code is the Same!
Lets rename the functions to foo :

foo [] = []

foo (x:xs)

| x mod 2 == 0 = x : foo xs

| otherwise = foo xs

foo [] = []

foo (x:xs)

| length x == 4 = x : foo xs

| otherwise = foo xs

Only di"erence is condition

x mod 2 == 0 vs length x == 4

Moral of the day

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

5 of 35 2/9/21, 8:58 AM

D.R.Y. Don’t Repeat Yourself!

Can we

reuse the general pattern and

plug-in the custom condition?

Higher-Order Functions
General Pattern

expressed as a higher-order function

takes plugin operations as arguments

Specific Operation

passed in as an argument to the HOF

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

6 of 35 2/9/21, 8:58 AM

filter
d 1

is Even is 4

The “filter” pattern

The filter Pattern

General Pattern

HOF filter

Recursively traverse list and pick out elements that satisfy a predicate

Specific Operations

Predicates isEven and isFour

filter instances

Avoid duplicating code!

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

7 of 35 2/9/21, 8:58 AM

I I

as as as as

QUIZ: What is the type of filter ?
-- evens [1,2,3,4] ==> [2,4]

evens :: [Int] -> [Int]

evens xs = filter isEven xs

where

 isEven :: Int -> Bool

 isEven x = x `mod` 2 == 0

-- fourChars ["i","must","do","work"] ==> ["must","work"]

fourChars :: [String] -> [String]

fourChars xs = filter isFour xs

where

 isFour :: String -> Bool

 isFour x = length x == 4

So what’s the type of filter ?

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

8 of 35 2/9/21, 8:58 AM

{- A -} filter :: (Int -> Bool) -> [Int] -> [Int]

{- B -} filter :: (String -> Bool) -> [String] -> [String]

{- C -} filter :: (a -> Bool) -> [a] -> [a]

{- D -} filter :: (a -> Bool) -> [a] -> [Bool]

{- E -} filter :: (a -> b) -> [a] -> [b]

Type of filter

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

9 of 35 2/9/21, 8:58 AM

collectionof a

Gund checks if a TRUET thesub list
FALSE that satify

cord

-- evens [1,2,3,4] ==> [2,4]

evens :: [Int] -> [Int]

evens xs = filter isEven xs

where

 isEven :: Int -> Bool

 isEven x = x `mod` 2 == 0

-- fourChars ["i","must","do","work"] ==> ["must","work"]

fourChars :: [String] -> [String]

fourChars xs = filter isFour xs

where

 isFour :: String -> Bool

 isFour x = length x == 4

For any type a

Input a predicate a -> Bool and collection [a]

Output a (smaller) collection [a]

filter :: (a -> Bool) -> [a] -> [a]

filter does not care what the list elements are

as long as the predicate can handle them

filter is polymorphic (generic) in the type of list elements

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

10 of 35 2/9/21, 8:58 AM

Tay

O
nt Bool stray

Example: ALL CAPS!
Lets write a function shout :

-- shout [] ==> []

-- shout ['h','e','l','l','o'] ==> ['H','E','L','L','O']

shout :: [Char] -> [Char]

shout [] = ...

shout (x:xs) = ...

Example: squares
Lets write a function squares :

-- squares [] ==> []

-- squares [1,2,3,4] ==> [1,4,9,16]

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

11 of 35 2/9/21, 8:58 AM

squares :: [Int] -> [Int]

squares [] = ...

squares (x:xs) = ...

Yikes, Most Code is the Same
Lets rename the functions to foo :

-- shout

foo [] = []

foo (x:xs) = toUpper x : foo xs

-- squares

foo [] = []

foo (x:xs) = (x * x) : foo xs

Lets refactor into the common pattern

pattern = ...

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

12 of 35 2/9/21, 8:58 AM

The “map” pattern

The map Pattern

General Pattern

HOF map

Apply a transformation f to each element of a list

Specific Operations

Transformations toUpper and \x -> x * x

map f [] = []

map f (x:xs) = f x : map f xs

Lets refactor shout and squares

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

13 of 35 2/9/21, 8:58 AM

shout = map ...

squares = map ...

map instances

QUIZ
What is the type of map ?

map f [] = []

map f (x:xs) = f x : map f xs

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

14 of 35 2/9/21, 8:58 AM

(A) (Char -> Char) -> [Char] -> [Char]

(B) (Int -> Int) -> [Int] -> [Int]

(C) (a -> a) -> [a] -> [a]

(D) (a -> b) -> [a] -> [b]

(E) (a -> b) -> [c] -> [d]

-- For any types `a` and `b`

-- if you give me a transformation from `a` to `b`

-- and a list of `a`s,

-- I'll give you back a list of `b`s

map :: (a -> b) -> [a] -> [b]

Type says it all!

The only meaningful thing a function of this type can do is apply its first

argument to elements of the list

Hoogle it!

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

15 of 35 2/9/21, 8:58 AM

f is

Don’t Repeat Yourself
Benefits of factoring code with HOFs:

Reuse iteration pattern

think in terms of standard patterns

less to write

easier to communicate

Avoid bugs due to repetition

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

17 of 35 2/9/21, 8:58 AM

