csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

Fiiter wnd €I =3

(Bilter cond (x)9)
’lﬁfﬂ'e\(') cond x = % rest

| otheawis = 1<SE

where PelLor XS
The “map” pattern rese = R o

shout [] = [] squares [] =[]

shout (x:xs) = toUpper x : shout xs squares (x:xs) = (x*x) : squares Xs
—~ _ G
map f [] = []

f x : map f xs

map f (x:xs)

The map Pattern
General Pattern

e HOF map

e Apply a transformation f to each element of a list
Specific Operations

e Transformations toUpper and \x -> x * X

map f []
map f (x:xs)

[]

f x : map f xs

Lets refactor shout and squares

13 of 35 2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof html

shout =map ...
squares = map ...
L ——
map f [] = []
map f (x:xs) = f x : map f xs
shout = map (\x -> tolUpper x) squares = map (\x => x*x)
map instances ~—— ~——~ —

QUIZ

What is the type of map ?

map f []
map f (x:xs)

[]

f x : map f xs

14 of 35 2/9/21, 8:58 AM

cse130 file:///Users/rjhala/teaching/130-wi2 1/docs/lectures/04-hof html
(A) (Char -> Char) -> [Char] -> [Char]
(B) (Int -> Int) -> [Int] -> [Int]
(C) (a -> a) -> [a] -> [a]
(D) (a -> b) -> [a] -> [b]

(E) (@ -> b) -> [c] -> [d]

-- For any types "a’ and b

-- 1f you give me a transformation from ‘a’ to b’
-- and a list of ‘a’s,

-- I'll give you back a list of 'b's

map :: (a -> b) -> [a] -> [b]

Type says it all!

e The only meaningful thing a function of this type can do is apply its first
argument to elements of the list

e Hoogle it!

15 of 35 2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof .html

9

Things to try at home:) e~)
o/
e can you write a function map' :: (a -> b) -> [a] -> [b] whose

behavior is different from map? S~—w—"—w A

e can you write a function map' :: (a -> b) -> [a] -> [b] suchthat
map' f xs returns alist whose elements are not in map f xs?

X X i

QUIZ

What is the value of quiz?

map :: (a->b) -> [a] -> [b] InF
quiz = map (\(x, y) -> x +y) [1, 2, 3]
@) [2, 4,61 (Int,Int)

(B) [3, 5]

(C) Syntax Error

(D) Type Error

(E) None of the above

16 of 35 2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi2 1/docs/lectures/04-hof .html

Don't Repeat Yourself

Benefits of factoring code with HOFs:
e Reuse iteration pattern
o think in terms of standard patterns
o less to write / less t.odp_, h @;c /qu(. wlanin
o easier to communicate

¢ Avoid bugs due to repetition

17 of 35 2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof .html

Recall: length of a list

-- len [] ==> 0

-- len ["carne", "asada"] ==> 2
len :: [a] -> Int

len [] =0

1 + len xs

len (x:xs)

Recall: summing a list

-- sum [] ==> 0

-- sum [1,2,3] ==> 6
sum :: [Int] -> Int

sum [] =0

X + Sum Xs

sum (X:Xs)

18 of 35 2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

Example: string concatenation

Let’s write a function cat:

-- cat [] ==>""

-- cat ["carne", "asada", "torta"] ==> "carneasadatorta"”
cat :: [String] -> String

cat [] = ...

cat (x:xs) = ...

Can you spot the pattern?

19 of 35 2/9/21, 8:58 AM

csel30

-- len

foo []

foo (x:xs)

-- sum

foo []

foo (x:xs)

-- cat

foo []

foo (x:xs)

0
1 + foo xs

0
X + foo xs

X ++ foo xs

pattern = ...

The “fold-right” pattern

20 of 35

file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof html

len []
len (x:xs)

0 sum []
1 + len xs || sum (x:xs)

0

cat []

X + sum xs || cat (x:xs)

aun

X ++ sum XS

foldr f b []
foldr f b (x:xs)

= b
= f

x (foldr f b xs)

2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof html
The foldr Pattern
General Pattern

e Recurse on tail

e Combine result with the head using some binary operation

foldr f b []
foldr f b (x:xs)

b
f x (foldr f b xs)

Let’s refactor sum, len and cat:

sum = foldr ...
cat = foldr ...
len = foldr ...

Factor the recursion out!

21 of 35 2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof html

foldr f b [] =b
foldr f b (x:xs) f x (foldr f b xs)

foldr (\x n => 1 + n) 0

len

sum = foldr (\x n => x + n) 0

foldr (\x s => x 4+ n) "

cat

foldr instances

You can write it more clearly as

sum = foldr (+) 0

cat = foldr (++) ""

The “fold-right” pat

22 of 35

o 2/9/21, 8:58 AM

=
csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof html
foldr f b [al, a2, a3, a4]
==> f a1l (foldr f b [a2, a3, a4])
==> f a1 (f a2 (foldr f b [a3, a4]))
==> f a1l (f a2 (f a3 (foldr f b [a4])))
==> f a1l (f a2 (f a3 (f a4 (foldr f b []))))
==> f a1l (f a2 (f a3 (f a4 b)))

C R RO

Accumulate the values from the right
e, "dog”, "howse "]
" “# " ", o Illl
foldr (+) 0 [1, ?3, (410('5 #(P /
==> 1 + (foldr (+) 0 [2, 3, 4])
==> 1 + (2 + (foldr (+) 0 [3, 4]))
==> 1+ (2 + (3 + (foldr (+) 0 [4])))
==> 1+ (2 + (3 + (4 + (foldr (+) 0 [1))))
==> 1+ (2 + (3 + (4 +.0)))

x, op (2, o (%; o (2, b))
(x : (% dJ))

"\6p -
/ / 9(} P \ %qof*lo))

For example:

QUIZ

What does this evaluate to?

23 of 35 2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi2 1/docs/lectures/04-hof .html

foldr f b []
foldr f b (x:xs)

b
f x (foldr f b xs)

quiz = foldr (\x v -> x : v) [] [1,2,3]

(A) Type error

(B) [1,2,3] A (7‘1 . (7‘3 . <7Cq '.U)))

ot SRR CARNC AN C RN P)))
(D) [[31,[2],[1]]

(E) [[1],[2],[3]]

foldr (:) [] [1,2,3]
==> (:) 1 (foldr (:) [] [2, 3])
==> (:) 1 ((:) 2 (foldr (:) [] [3]))
==> (:) 1 ((:) 2 ((:) 3 (foldr (:) [I1 [DD)
> () 1 ((:) 2 ((:) 3 [1))
== 1:(2:@3:[D)
== [1,2,3]

24 of 35 2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi2 1/docs/lectures/04-hof .html

QUIZ HW 'ExercisE’

What is the most general type of foldr ?

foldr :: (a ->b ->b) ->b ->[a] -> b
foldr f b [] =b
foldr f b (x:xs) = f x (foldr f b xs)

(A) (a ->a ->a) ->a ->[a] -> a
(B) (a ->a ->b) ->a ->[a] ->b
(C) (a ->b ->3a) ->b ->[a] -> b
(D)(a ->b ->b) ->b ->[a] ->b

(E) (b ->a ->b) ->b ->[a] -> b

25 of 35 2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof html

Tail Recursive Fold

b

f x (foldr f b xs)
- N

Is foldr tail recursive? -
NOT 772

,

foldr f b []
foldr f b (x:xs)

What about tail-recursive versions?

Let’s write tail-recursive sum!

sumTR :: [Int] -> Int
sumTR = ...

26 of 35

2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof html

Lets run sumTR to see how it works

sumTR [1,2,3]
==> helper 0 [1,2,3]

==> helper 1 [2,3] -- 0+ 1 ==>1
==> helper 3 [3] -- 1+ 2 ==>3
==> helper 6 [] --3+3==>6
==> 6

Note: helper directly returns the result of recursive call!

Let’s write tail-recursive cat!

catTR :: [String] -> String
catTR = ...

27 of 35 2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof html

Lets run catTR to see how it works

catTR ["carne", "asada", "torta"]
==> helper "" "carne", "asada", "torta"]
==> helper "carne" ["asada”, "torta"]
==> helper "carneasada" ["torta"]
==> helper "carneasadatorta" []

==> "carneasadatorta"

Note: helper directly returns the result of recursive call!

28 of 35 2/9/21, 8:58 AM

csel30

file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof html

Can you spot the patterns?

-- sumTR
foo xs
where
helper
helper

-- catTR
foo xs
where
helper
helper

pattern =

daccC
daCC

dacc
daCcC

= helper 0 xs

[] = acc

(x:xs) = helper (acc + x) xs
= helper "" xs

[] = acc

(x:xs) = helper (acc ++ x) xs

The “fold-left” pattern

sum Xxs
where

helper acc []

halnar arr (veve)

29 of 35

helper 0 xs cat xs
where
acc helper acc []

halnar (ares o v) ve halnar arr (vsve)

helper “” xs

acc

halnar (are 21 v) ve

2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof html

| eENl uee AeAss T nesper vwee oA as g PN uMe AAiAss T nesper vwee oA as
foldl f b xs = helper b xs
where
helper acc [] = acc
helper acc (x:xs) = helper (f acc x) xs

The foldl Pattern
General Pattern

e Use a helper function with an extra accumulator argument
e To compute new accumulator, combine current accumulator with the head

using some binary operation

foldl f b xs = helper b xs
where
helper acc [] = acc

helper acc (x:xs) = helper (f acc x) xs

Let’s refactor sumTR and catTR:

foldl

sumTR

catTR = foldl

Factor the tail-recursion out!

30 of 35 2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof html

QUIZ

What does this evaluate to?

foldl f b xs = helper b xs
where
helper acc [] = acc

helper (f acc x) xs

helper acc (x:xs)

quiz = foldl (\xs x -> x : xs) [] [1,2,3]

(A) Type error
(B) [1,2,3]
(C) [3,2,1]
(D) [[3],[2],[1]]
(E) [[1],[2],[3]]

310f35 2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof html

foldl f b (x1: x2: x3 : [])
==> helper b (x1: x2: x3 : [])
==> helper (f x1 b) (x2: x3 : [])
==> helper (f x2 (f x1 b)) (x3 : [])
==> helper (f x3 (f x2 (f x1 b))) []
==> (x3 : (x2 : (x1 : []))

The “fold-left” pattern

foldl f b [x1, x2, x3, x4]
==> helper b [x1, x2, x3, x4]
==> helper (f b x1) [x2, X3, x4]
==> helper (f (f b x1) x2) [x3, x4]
==> helper (f (f (f b x1) x2) x3) [x4]

==> helper (f (f (f (f b x1) x2) x3) x4) []
==> (f (f (f (f b x1) x2) x3) x4)

Accumulate the values from the left

For example:

320f 35 2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof html

foldl (+) 0 [1, 2, 3, 4]
==> helper 0 [1, 2, 3, 4]
==> helper (0 + 1) [2, 3, 4]
==> helper ((0 + 1) + 2) [3, 4]
==> helper (((0 + 1) + 2) + 3) [4]

==> helper ((((0 + 1) + 2) + 3) + 4) []
==> ((((0 + 1) + 2) + 3) + 4)

Left vs.Right

foldl f b [x1, x2, x3] ==> f (f (f b x1) x2) x3 -- Left

foldr f b [x1, x2, x3] ==> f x1 (f x2 (f x3 b)) -- Right
For example:

foldl (+) 0 [1, 2, 3] ==> ((0 + 1) +2) + 3 -- Left

foldr (+) 0 [1, 2, 3] ==>1+ (2 + (3 +0)) -- Right

Different types!

330f 35 2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

foldl :: (b ->a ->b) ->b ->[a] ->b -- Left

foldr :: (a ->b ->b) ->b ->[a] ->b -- Right

Higher Order Functions

Iteration patterns over collections:

e Filter values in a collection given a predicate

e Map (iterate) a given transformation over a collection

¢ Fold (reduce) a collection into a value, given a binary operation to combine
results

HOFs can be put into libraries to enable modularity
e Data structure library implements map, filter, fold for its collections
o generic efficient implementation
o generic optimizations: map f (map g xs) --> map (f.g) xs
¢ Data structure clients use HOFs with specific operations

o no need to know the implementation of the collection

34 of 35 2/9/21, 8:58 AM

csel30 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof html

Crucial foundation of
e “big data” revolution e.g. MapReduce, Spark, TensorFlow

e “web programming” revolution e.g. Jquery, Angular, React

(https://ucsd-cse130.github.io/wi21/feed.xml) (https://twitter.com/ranjitjhala)
(https://plus.google.com/u/0/104385825850161331469)
(https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher
(http://lucumr.pocoo.org), suggest improvements here (https://github.com
Jucsd-progsys/liquidhaskell-blog/).

350f35 2/9/21, 8:58 AM

