
The “map” pattern

The map Pattern

General Pattern

HOF map

Apply a transformation f to each element of a list

Specific Operations

Transformations toUpper and \x -> x * x

map f [] = []

map f (x:xs) = f x : map f xs

Lets refactor shout and squares

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

13 of 35 2/9/21, 8:58 AM

filter cond CT L

filtercondCx
filter I conax x rest

I otherwise rest

where
rest filtercondxs

I

shout = map ...

squares = map ...

map instances

QUIZ
What is the type of map ?

map f [] = []

map f (x:xs) = f x : map f xs

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

14 of 35 2/9/21, 8:58 AM

Q

(A) (Char -> Char) -> [Char] -> [Char]

(B) (Int -> Int) -> [Int] -> [Int]

(C) (a -> a) -> [a] -> [a]

(D) (a -> b) -> [a] -> [b]

(E) (a -> b) -> [c] -> [d]

-- For any types `a` and `b`

-- if you give me a transformation from `a` to `b`

-- and a list of `a`s,

-- I'll give you back a list of `b`s

map :: (a -> b) -> [a] -> [b]

Type says it all!

The only meaningful thing a function of this type can do is apply its first

argument to elements of the list

Hoogle it!

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

15 of 35 2/9/21, 8:58 AM

f is

Things to try at home:

can you write a function map' :: (a -> b) -> [a] -> [b] whose

behavior is di"erent from map ?

can you write a function map' :: (a -> b) -> [a] -> [b] such that

map' f xs returns a list whose elements are not in map f xs ?

QUIZ
What is the value of quiz ?

map :: (a -> b) -> [a] -> [b]

quiz = map (\(x, y) -> x + y) [1, 2, 3]

(A) [2, 4, 6]

(B) [3, 5]

(C) Syntax Error

(D) Type Error

(E) None of the above

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

16 of 35 2/9/21, 8:58 AM

7
z

X x x

aint

Int Int

Don’t Repeat Yourself
Benefits of factoring code with HOFs:

Reuse iteration pattern

think in terms of standard patterns

less to write

easier to communicate

Avoid bugs due to repetition

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

17 of 35 2/9/21, 8:58 AM

1 lesscode to fix maintain

Recall: length of a list
-- len [] ==> 0

-- len ["carne","asada"] ==> 2

len :: [a] -> Int

len [] = 0

len (x:xs) = 1 + len xs

Recall: summing a list
-- sum [] ==> 0

-- sum [1,2,3] ==> 6

sum :: [Int] -> Int

sum [] = 0

sum (x:xs) = x + sum xs

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

18 of 35 2/9/21, 8:58 AM

Example: string concatenation
Let’s write a function cat :

-- cat [] ==> ""

-- cat ["carne","asada","torta"] ==> "carneasadatorta"

cat :: [String] -> String

cat [] = ...

cat (x:xs) = ...

Can you spot the pattern?

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

19 of 35 2/9/21, 8:58 AM

-- len

foo [] = 0

foo (x:xs) = 1 + foo xs

-- sum

foo [] = 0

foo (x:xs) = x + foo xs

-- cat

foo [] = ""

foo (x:xs) = x ++ foo xs

pattern = ...

The “fold-right” pattern

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

20 of 35 2/9/21, 8:58 AM

The foldr Pattern

General Pattern

Recurse on tail

Combine result with the head using some binary operation

foldr f b [] = b

foldr f b (x:xs) = f x (foldr f b xs)

Let’s refactor sum , len and cat :

sum = foldr

cat = foldr

len = foldr

Factor the recursion out!

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

21 of 35 2/9/21, 8:58 AM

foldr instances

You can write it more clearly as

sum = foldr (+) 0

cat = foldr (++) ""

The “fold-right” pattern

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

22 of 35 2/9/21, 8:58 AM

Nc Nz Nz 2cg b
w

foldr f b [a1, a2, a3, a4]

==> f a1 (foldr f b [a2, a3, a4])

==> f a1 (f a2 (foldr f b [a3, a4]))

==> f a1 (f a2 (f a3 (foldr f b [a4])))

==> f a1 (f a2 (f a3 (f a4 (foldr f b []))))

==> f a1 (f a2 (f a3 (f a4 b)))

Accumulate the values from the right

For example:

foldr (+) 0 [1, 2, 3, 4]

==> 1 + (foldr (+) 0 [2, 3, 4])

==> 1 + (2 + (foldr (+) 0 [3, 4]))

==> 1 + (2 + (3 + (foldr (+) 0 [4])))

==> 1 + (2 + (3 + (4 + (foldr (+) 0 []))))

==> 1 + (2 + (3 + (4 + 0)))

QUIZ
What does this evaluate to?

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

23 of 35 2/9/21, 8:58 AM

cars
cat dog horse

cat deg horse t

x If I op z op 2cgop b

x Kz Nz 2cg C

Tor op
t

se ok
1 sea

P

by

foldr f b [] = b

foldr f b (x:xs) = f x (foldr f b xs)

quiz = foldr (\x v -> x : v) [] [1,2,3]

(A) Type error

(B) [1,2,3]

(C) [3,2,1]

(D) [[3],[2],[1]]

(E) [[1],[2],[3]]

foldr (:) [] [1,2,3]

==> (:) 1 (foldr (:) [] [2, 3])

==> (:) 1 ((:) 2 (foldr (:) [] [3]))

==> (:) 1 ((:) 2 ((:) 3 (foldr (:) [] [])))

==> (:) 1 ((:) 2 ((:) 3 []))

== 1 : (2 : (3 : []))

== [1,2,3]

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

24 of 35 2/9/21, 8:58 AM

X Kz Ks Ky a

x i K2 Nz 2cg C

QUIZ
What is the most general type of foldr ?

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f b [] = b

foldr f b (x:xs) = f x (foldr f b xs)

(A) (a -> a -> a) -> a -> [a] -> a

(B) (a -> a -> b) -> a -> [a] -> b

(C) (a -> b -> a) -> b -> [a] -> b

(D) (a -> b -> b) -> b -> [a] -> b

(E) (b -> a -> b) -> b -> [a] -> b

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

25 of 35 2/9/21, 8:58 AM

HW EXERUSE

Tail Recursive Fold
foldr f b [] = b

foldr f b (x:xs) = f x (foldr f b xs)

Is foldr tail recursive?

What about tail-recursive versions?
Let’s write tail-recursive sum !

sumTR :: [Int] -> Int

sumTR = ...

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

26 of 35 2/9/21, 8:58 AM

Not TR

Lets run sumTR to see how it works

sumTR [1,2,3]

==> helper 0 [1,2,3]

==> helper 1 [2,3] -- 0 + 1 ==> 1

==> helper 3 [3] -- 1 + 2 ==> 3

==> helper 6 [] -- 3 + 3 ==> 6

==> 6

Note: helper directly returns the result of recursive call!

Let’s write tail-recursive cat !

catTR :: [String] -> String

catTR = ...

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

27 of 35 2/9/21, 8:58 AM

Lets run catTR to see how it works

catTR ["carne", "asada", "torta"]

==> helper "" ["carne", "asada", "torta"]

==> helper "carne" ["asada", "torta"]

==> helper "carneasada" ["torta"]

==> helper "carneasadatorta" []

==> "carneasadatorta"

Note: helper directly returns the result of recursive call!

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

28 of 35 2/9/21, 8:58 AM

Can you spot the pattern?
-- sumTR

foo xs = helper 0 xs

where

 helper acc [] = acc

 helper acc (x:xs) = helper (acc + x) xs

-- catTR

foo xs = helper "" xs

where

 helper acc [] = acc

 helper acc (x:xs) = helper (acc ++ x) xs

pattern = ...

The “fold-left” pattern

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

29 of 35 2/9/21, 8:58 AM

The foldl Pattern

General Pattern

Use a helper function with an extra accumulator argument

To compute new accumulator, combine current accumulator with the head

using some binary operation

foldl f b xs = helper b xs

where

 helper acc [] = acc

 helper acc (x:xs) = helper (f acc x) xs

Let’s refactor sumTR and catTR :

sumTR = foldl

catTR = foldl

Factor the tail-recursion out!

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

30 of 35 2/9/21, 8:58 AM

QUIZ
What does this evaluate to?

foldl f b xs = helper b xs

where

 helper acc [] = acc

 helper acc (x:xs) = helper (f acc x) xs

quiz = foldl (\xs x -> x : xs) [] [1,2,3]

(A) Type error

(B) [1,2,3]

(C) [3,2,1]

(D) [[3],[2],[1]]

(E) [[1],[2],[3]]

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

31 of 35 2/9/21, 8:58 AM

foldl f b (x1: x2: x3 : [])

==> helper b (x1: x2: x3 : [])

==> helper (f x1 b) (x2: x3 : [])

==> helper (f x2 (f x1 b)) (x3 : [])

==> helper (f x3 (f x2 (f x1 b))) []

==> (x3 : (x2 : (x1 : [])))

The “fold-left” pattern
foldl f b [x1, x2, x3, x4]

==> helper b [x1, x2, x3, x4]

==> helper (f b x1) [x2, x3, x4]

==> helper (f (f b x1) x2) [x3, x4]

==> helper (f (f (f b x1) x2) x3) [x4]

==> helper (f (f (f (f b x1) x2) x3) x4) []

==> (f (f (f (f b x1) x2) x3) x4)

Accumulate the values from the left

For example:

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

32 of 35 2/9/21, 8:58 AM

foldl (+) 0 [1, 2, 3, 4]

==> helper 0 [1, 2, 3, 4]

==> helper (0 + 1) [2, 3, 4]

==> helper ((0 + 1) + 2) [3, 4]

==> helper (((0 + 1) + 2) + 3) [4]

==> helper ((((0 + 1) + 2) + 3) + 4) []

==> ((((0 + 1) + 2) + 3) + 4)

Left vs. Right
foldl f b [x1, x2, x3] ==> f (f (f b x1) x2) x3 -- Left

foldr f b [x1, x2, x3] ==> f x1 (f x2 (f x3 b)) -- Right

For example:

foldl (+) 0 [1, 2, 3] ==> ((0 + 1) + 2) + 3 -- Left

foldr (+) 0 [1, 2, 3] ==> 1 + (2 + (3 + 0)) -- Right

Di"erent types!

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

33 of 35 2/9/21, 8:58 AM

foldl :: (b -> a -> b) -> b -> [a] -> b -- Left

foldr :: (a -> b -> b) -> b -> [a] -> b -- Right

Higher Order Functions
Iteration patterns over collections:

Filter values in a collection given a predicate

Map (iterate) a given transformation over a collection

Fold (reduce) a collection into a value, given a binary operation to combine

results

HOFs can be put into libraries to enable modularity

Data structure library implements map , filter , fold for its collections

generic e!cient implementation

generic optimizations: map f (map g xs) --> map (f.g) xs

Data structure clients use HOFs with specific operations

no need to know the implementation of the collection

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

34 of 35 2/9/21, 8:58 AM

Crucial foundation of

“big data” revolution e.g. MapReduce, Spark, TensorFlow

“web programming” revolution e.g. Jquery, Angular, React

(https://ucsd-cse130.github.io/wi21/feed.xml) (https://twitter.com/ranjitjhala)

(https://plus.google.com/u/0/104385825850161331469)

(https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher

(http://lucumr.pocoo.org), suggest improvements here (https://github.com

/ucsd-progsys/liquidhaskell-blog/).

cse130 file:///Users/rjhala/teaching/130-wi21/docs/lectures/04-hof.html

35 of 35 2/9/21, 8:58 AM

