filter wand []$=[]$

'filter'
filter cone ($x: x s$)
1 cone $x=x$:rest
1 otheowis $=$ rest
The "map" pattern
$\begin{gathered}\text { where } \\ \text { rest }\end{gathered}=$ filter cone $x s$

The map Pattern
General Pattern

- HOF map
- Apply a transformation f to each element of a list

Specific Operations

- Transformations toUpper and $\mid x \rightarrow x$ * x

$$
\begin{array}{ll}
\operatorname{map} f[] & =[] \\
\operatorname{map} f(x: x s) & =f x: \operatorname{map} f x s
\end{array}
$$

Lets refactor shout and squares
shout $=$ map ...
squares = map ...

QUIZ

What is the type of map?
$\operatorname{map} \mathrm{f}[]=[]$
map $f(x: x s)=f x: m a p h s$
(A) (Char -> Char) -> [Char] -> [Char]
(B) (Int -> Int) -> [Int] -> [Int]
(C) (a -> a) -> [a] -> [a]
(D) (a -> b) -> [a] -> [b]
(E) (a -> b) -> [c] -> [d]
-- For any types `a` and `b`
-- if you give me a transformation from `a` to `b`
-- and a list of `a`s,
-- I'll give you back a list of `b`s
map :: (a -> b) -> [a] -> [b]
$f \times s$
Type says it all!

- The only meaningful thing a function of this type can do is apply its first argument to elements of the list
- Hoogle it!

Things to try at home:

- can you write a function map' : : (a -> b) -> [a] -> [b] whose behavior is different from map ?

- can you write a function map' :: (a -> b) -> [a] -> [b] such that map' f xs returns a list whose elements are not in map $f x s$?

QUIZ

What is the value of quiz?

(C) Syntax Error
(D) Type Error
(E) None of the above

Don't Repeat Yourself

Benefits of factoring code with HOFs:

- Reuse iteration pattern
- think in terms of standard patterns
- less to write / less code to h_{x} /macintain
- easier to communicate
- Avoid bugs due to repetition

Recall: length of a list

$$
\begin{aligned}
& \text {-- len [] ==> } 0 \\
& - \text { len ["carne", "asada"] ==> } 2 \\
& \text { len :: [a] -> Int } \\
& \text { len }[] \quad=0 \\
& \text { len }(x: x s)=1+\text { len } x s
\end{aligned}
$$

Recall: summing a list

$$
\begin{aligned}
& -\operatorname{sum}[] \quad==>0 \\
& -\operatorname{sum}[1,2,3]==>6 \\
& \text { sum }::[\text { Int }]->\text { Int } \\
& \operatorname{sum}[] \quad=0 \\
& \operatorname{sum}(x: x s)=x+\operatorname{sum} x s
\end{aligned}
$$

Example: string concatenation

Let's write a function cat :
-- cat [] ==> ""
-- cat ["carne", "asada", "torta"] ==> "carneasadatorta"
cat :: [String] -> String
cat [] = ...
cat (x:xs) = ...

Can you spot the pattern?
-- len
foo [] = 0
foo (x:xs) = $1+$ foo $x s$
-- sum
foo [] $=0$
foo (x:xs) $=x+$ foo $x s$
-- cat
foo [] = ""
foo (x:xs) = x ++ foo xs
pattern = ...

The "fold-right" pattern

len []$=0$	
len $(\mathrm{x}: \mathrm{xs})$	$=1+$ len xs

$$
\begin{array}{ll}
\operatorname{sum}[] & =0 \\
\operatorname{sum}(x: x s) & =x+\operatorname{sum} x s
\end{array}
$$

```
cat [] = ""
cat (x:xs) = x ++ sum xs
```

```
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)
```

The foldr Pattern
General Pattern

- Recurse on tail
- Combine result with the head using some binary operation

$$
\begin{array}{ll}
\text { foldr f b [] } & =\mathrm{b} \\
\text { foldr } \mathrm{f} \text { b }(\mathrm{x}: \mathrm{xs}) & =\mathrm{f} x(\text { foldr } \mathrm{f} \text { b xs })
\end{array}
$$

Let's refactor sum, len and cat:

$$
\begin{aligned}
& \text { sum }=\text { foldr } \ldots \\
& \text { cat }=\text { foldr } \ldots \\
& \text { len }=\text { foldr } \ldots \\
& \ldots
\end{aligned}
$$

Factor the recursion out!

```
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)
```

```
len = foldr (\x n -> 1 + n) 0
```

sum $=$ fold ($\backslash \mathrm{x} \mathrm{n} \rightarrow \mathrm{x}+\mathrm{n}$) 0

$$
\text { cat }=\text { fold (} \backslash x \text { s -> x ++ n) """ }
$$

fold instances
You can write it more clearly as

$$
\begin{aligned}
& \text { sum }=\text { fold }(+) 0 \\
& \text { cat }=\text { fold }(++) " "
\end{aligned}
$$


```
foldr f b [a1, a2, a3, a4]
==> f a1 (foldr f b [a2, a3, a4])
==> f a1 (f a2 (foldr f b [a3, a4]))
==> f a1 (f a2 (f a3 (foldr f b [a4])))
==> f a1 (f a2 (f a3 (f a4 (foldr f b []))))
==> f a1 (f a2 (f a3 (f a4 b)))
```

Accumulate the values from the right
For example:
['cat", "dug", "horse"]
fold (+) 0 [1, 2, 3, 4]

$$
\begin{aligned}
& \text { "cat" } \left.+\left(\text { "dg" }+ \text { ("horse }{ }^{\prime \prime}+11\right)\right) \\
& 2,3,4]
\end{aligned}
$$

==> 1 + (fold (+) 0 [2, 3, 4])
$==>1+(2+(f o l d r(+) 0[3,4]))$
$==>1+(2+(3+(f o l d r(+) 0[4])))$
$==>1+(2+(3+(4+(f o l d r(+) 0[]))))$
$=>1 \pm(2 \pm(3 \pm(4 \pm 0)))$
x_{1} 'op $\left(x_{2}\right.$ 'op' $\left(x_{3}\right.$ 'op' $\left(x_{4}\right.$ op $\left.\left.\left.b\right)\right)\right)$
$x_{1}:\left(x_{2}:\left(x_{3}:\left(x_{4}: \downarrow J\right)\right)\right)$

QUIZ
What does this evaluate to?
foldr f b [] = b
foldr f b (x:xs) $=f x$ (foldr f b xs)

$$
\text { quiz }=\text { foldr }(\backslash x \text { v }->x \text { : v) }[][1,2,3]
$$

(A) Type error
(B) $[1,2,3]$

$$
x_{1}:\left(x_{2}:\left(x_{3}:\left(x_{4}:[]\right)\right)\right)
$$

(C) $[3,2,1]$

$$
x_{1}:\left(x_{2}:\left(x_{3}:\left(x_{4}:[]\right)\right)\right)
$$

(D) $[[3],[2],[1]]$
(E) $[[1],[2],[3]]$

```
foldr (:) [] [1,2,3]
    ==> (:) 1 (foldr (:) [] [2, 3])
    ==> (:) 1 ((:) 2 (foldr (:) [] [3]))
    ==> (:) 1 ((:) 2 ((:) 3 (foldr (:) [] [])))
    ==> (:) 1 ((:) 2 ((:) 3 []))
    == 1 : (2 : (3 : []))
    == [1,2,3]
```


QUHZ HW 'EXERCISE'

What is the most general type of foldr?
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] $=b$
foldr f b (x:xs) $=f x$ (foldr f b xs)
(A) (a -> a -> a) -> a -> [a] -> a
(B) (a -> a -> b) -> a -> [a] -> b
(C) (a -> b -> a) -> b -> [a] -> b
(D) (a -> b -> b) -> b -> [a] -> b
(E) (b -> a -> b) -> b -> [a] -> b

Tail Recursive Fold

```
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)
```

Is foldr tail recursive?

What about tail-recursive versions?

Let's write tail-recursive sum !
sumTR :: [Int] -> Int
sumTR = ...

Lets run sumTR to see how it works

$$
\begin{aligned}
& \text { sumTR }[1,2,3] \\
& \text { ==> helper } 0 \text { [1,2,3] } \\
& ==>\text { helper } 1 \quad[2,3] \quad--0+1 \text { ==> } 1 \\
& ==>\text { helper } 3 \text { [3] -- } 1+2 \text { ==> } 3 \\
& \text { ==> helper } 6 \text { [] -- } 3+3 \text { ==> } 6 \\
& \text { ==> } 6
\end{aligned}
$$

Note: helper directly returns the result of recursive call!

Let's write tail-recursive cat!
catTR :: [String] -> String
catTR = ...

Lets run catTR to see how it works
catTR
["carne", "asada", "torta"]
==> helper "" ["carne", "asada", "torta"]
==> helper "carne" ["asada", "torta"]
==> helper "carneasada"
["torta"]
==> helper "carneasadatorta"
[]
==> "carneasadatorta"

Note: helper directly returns the result of recursive call!

Can you spot the pattern?

-- sumTR
foo xs
= helper 0 xs
where
helper acc [] = acc
helper acc $(x: x s)=$ helper (acc $+x$) xs
-- catTR
foo xs
= helper "" xs
where
helper acc [] = acc
helper acc $(x: x s)=$ helper (acc ++ x) xs
pattern = ...

The "fold-left" pattern


```
foldl f b xs = helper b xs
    where
        helper acc [] = acc
        helper acc (x:xs) = helper (f acc x) xs
```

The foldl Pattern

General Pattern

- Use a helper function with an extra accumulator argument
- To compute new accumulator, combine current accumulator with the head using some binary operation

```
foldl f b xs = helper b xs
    where
        helper acc [] = acc
        helper acc (x:xs) = helper (f acc x) xs
```

Let's refactor sumTR and catTR:

```
sumTR = foldl ... ...
catTR = foldl ... ...
```

Factor the tail-recursion out!

QUIZ

What does this evaluate to?

```
foldl f b xs = helper b xs
    where
        helper acc [] = acc
        helper acc (x:xs) = helper (f acc x) xs
quiz = foldl (\xs x -> x : xs) [] [1,2,3]
```

(A) Type error
(B) $[1,2,3]$
(C) $[3,2,1]$
(D) $[[3],[2],[1]]$
(E) [[1],[2],[3]]

```
foldl f b (x1: x2: x3 : [])
==> helper b (x1: x2: x3 : [])
==> helper (f x1 b) (x2: x3 : [])
==> helper (f x2 (f x1 b)) (x3 : [])
==> helper (f x3 (f x2 (f x1 b))) []
==> ( x3 : (x2 : (x1 : [])))
```


The "fold-left" pattern

```
foldl f b
    ==> helper b
    ==> helper (f b x1)
    ==> helper (f (f b x1) x2)
    ==> helper (f (f (f b x1) x2) x3) [x4]
    ==> helper (f (f (f (f b x1) x2) x3) x4) []
    ==> (f (f (f (f b x1) x2) x3) x4)
```

Accumulate the values from the left
For example:

$$
\begin{array}{rr}
\text { foldl }(+) 0 & {[1,2,3,4]} \\
==> & \text { helper } 0 \\
==> & \text { helper }(0+1) \\
==> & \text { helper }((0+1)+2) \\
==> & {[2,3,4]} \\
==> & {[3,4]} \\
==> & \text { helper }((((0+1)+2)+3)
\end{array}
$$

Left vs.Right

foldl f b $[x 1, x 2, x 3]==>f(f(f b x 1) \times 2) x 3$-- Left
foldr f b $[x 1, x 2, x 3]==>f \times 1(f \times 2(f \times 3 b))$-- Right
For example:
foldl (+) $0[1,2,3]==>((0+1)+2)+3$-- Left
foldr (+) $0[1,2,3]==>1+(2+(3+0))$-- Right
Different types!
foldl :: (b -> a -> b) -> b -> [a] -> b -- Left
foldr :: (a -> b -> b) -> b -> [a] -> b -- Right

Higher Order Functions

Iteration patterns over collections:

- Filter values in a collection given a predicate
- Map (iterate) a given transformation over a collection
- Fold (reduce) a collection into a value, given a binary operation to combine results

HOFs can be put into libraries to enable modularity

- Data structure library implements map, filter, fold for its collections
- generic efficient implementation
- generic optimizations: map f (map g xs) --> map (f.g) xs
- Data structure clients use HOFs with specific operations
- no need to know the implementation of the collection

Crucial foundation of

- "big data" revolution e.g. MapReduce, Spark, TensorFlow
- "web programming" revolution e.g. Jquery, Angular, React
(https://ucsd-cse130.github.io/wi21/feed.xml) (https://twitter.com/ranjitjhala) (https://plus.google.com/u/o/104385825850161331469) (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher (http://lucumr.pocoo.org), suggest improvements here (https://github.com /ucsd-progsys/liquidhaskell-blog/).

