CSE 130, Spring 2012 Name/ID

Instructor: Ranjit Jhala

Final Exam

Instructions: read these first!

Do not open the exam, turn it over, or look inside until you are told to begin.
Switch off cell phones and other potentially noisy devices.
Write your full name on the line at the top of this page. Do not separate pages.

You may refer to any printed materials, but no computational devices (such
as laptops, calculators, phones, iPads, friends, enemies, pets, lovers).

Read questions carefully. Show all work you can in the space provided.

Where limits are given, write no more than the amount specified.
The rest will be ignored.

Avoid seeing anyone else’s work or allowing yours to be seen.
Do not communicate with anyone but an exam proctor.

If you have a question, raise your hand.

When time is up, stop writing.

The points for each part are rough indication of the time that part should take.

Run IATEX again to produce the table

CSE 130, Spring 2012 Final Exam Page 1 of 2?

1. [?? points]
In each question below, we have given a Scala function with missing type information. Your job is to
1. fill in appropriate types (so the function will be accepted by the typechecker),

2. write down one set of suitable inputs (i.e. of the corresponding types),

3. write down the output corresponding to the input.

Hint: Recall that syntax for anonymous functions in Scala is (x1, ..., xn) => e which is equivalent to Ocaml’s
fun (x1,...,xn) —> e

(a) [2 points]
def plus(x: Tl, y: Tl): T2 = x + vy

val out = plus(inl, in2)

T1

inl

in2

out

(b) [5 points]
def plussed(x: T1l, y: T2): T3 = x + v (Xx)

val out = plussed(inl, in2)

T1

T2

T3

CSE 130, Spring 2012 Final Exam

Page 2 of ??

inl =

in2

out =

(c) [8 points]
def squash[A] (xss: Tl): T2 = {
for (xs <— xss

i X <= xs)
yield x

val out = squash (in)

Tl =

T2 =

out =

(d) [10 points]

def reduce[A] (xs: T1, f£: T2): T3
var acc = xs(0)

I
—

for (x <- xs.tail) {

acc = f(acc, x)
}
acc
}
val out = reduce (inl, in2)

T1

CSE 130, Spring 2012 Final Exam Page 3 of ??

T2 =

inl =

in2

out =

CSE 130, Spring 2012 Final Exam Page 4 of 2?

(e) [10 points]

def explode[A] (xs: Tl): T2 = {
if (xs.isEmpty)

List (List ())
else {
for (ys <- explode(xs.tail)

; z <- List(List (), List(xs.head)))
yield (z ++ ys)

val out = explode(in)

Tl =

T2 =

in =

out =

CSE 130, Spring 2012 Final Exam Page 5 of 2?

2. [?? points]
“MapReduce is a software framework introduced by Google to support distributed computing on large data sets on
clusters of computers.” (From WikiPedia)

This question will give you a flavor of what it is like to program using the MapReduce model, using a simple Scala
implementation.

(a) [7 points] Consider the function expand whose type is given at the bottom.

def expand[A, B] (f: A => List[B], xs: Iterator[A]): Iterator[B] = {
for (x <—- xs
Py <= £(x))
yield vy

What is the value of ans below ?

val clone = (p => (0 until p._2) .map(_ => p._1).toList)
val ans = expand(clone, Iterator(("a", 1), ("b", 2), ("c", 3)))
Result:

(b) [8 points] Consider the function insert

def insert[K, V] (table: Map[K, List[V]], key: K, v: V): Map[K, List[V]] = {
if table.contains (key) {
val vs = table(key)
table += (key —-> v::vs)
} else {
table += (key —-> List(v))

What is the value of ans below ?

val t = Map("judynails"™ -> List (2)
, "larsumlaut" -> List (2, 2, 9)
"caseylynch" -> List (3))

val ans insert (t, "judynails", 4)

Result:

CSE 130, Spring 2012 Final Exam Page 6 of ??

(c) [5 points] Consider the function group whose type is given at the bottom.

def group[K, V] (kvs: Iterator[(K, V)]): Map[K, List[V]] = {
var table: Map[K, List[V]] = Map/()
for ((k, v) <= kvs) {
table = insert (table, k, V)
}
table

What is the value of ans below ?

val kvs = Iterator(("judynails" , 3)
, ("larsumlaut", 8)
;, ("caseylynch", 19)
;, ("caseylynch", 12)
, ("larsumlaut", 7)
;, ("judynails" , 6))

val ans = group (kvs)

Result:

(d) [10 points] Consider the function collapse whose type is given at the bottom.
def collapse[K, V] (table: Map[K, List[V]], f: (V, V) => V): Map[K, V] = {
table.mapValues (reduce(_, f))
}

Hint: The reduce function is from Question 1(d).
Hint: The method ‘mapValues‘ (for Scala HashMaps) behaves as follows:

scala> Map ("one" -> 1, "two" -> 2).mapValues(_ + 100)
res: Map[String, Int] = Map("one" -> 101, "two" -> 102)

What is the value of ans below ?

let table = Map("judynails"™ -> List (9, 3)
"larsumlaut" -> List (5, 2, 3)
"caseylynch" -> List (3, 6)
)
val ans = collapse(table, (x, y) => x + vy)

Result:

CSE 130, Spring 2012 Final Exam Page 7 of 2?

(e) [10 points] Finally, consider the function mapReduce whose type is given at the bottom.

def mapReducel[E, K, V] (xs : Iterator[E]
[(K, V)]
Vo) Map[K, V] = {

, mapper : E => List
, reducer: (V, V) =>

val kvs = expand (mapper, Xxs)

val table = group(kvs)

val out = collapse(table, reducer)
out

Intuitively, the mapReduce function takes the arguments:

e xs: which is a collection of values of type E, e.g. a collection of documents,
e mapper: which is a function that maps each E value to a list of key-value pairs, kvs of type List [K, V].

e reducer: An accumulation function that takes a “current accumulation” value of type V a “next value” of
type V and returns a new accumulated value of type V (e.g. like fold_left).

First, the mapper function is used to expand the list xs into a giant collection of key-value pairs kvs. Second,
the expanded set of key-value pairs is grouped by the key to get table : Map[K, List[V]] Third, the
reducer is used to reduce the list of values in each group in the table, and the reduced table out is returned. In
the real implementation, each of the three steps of mapReduce is carried out in parallel across several (thousands
of!) machines.

Assume that you are given the following:

type Doc // Definition is unimportant
val wwwdocs: Iterator[Doc] // The WWW as a Document collection
def docWords (d: Doc): List[String]

that is, a special type Doc, a collection of all WWW documents, and a function that returns a list of strings
corresponding to the words in a given document. Your goal is to compute the frequency with which different words
appear in documents on the Web. That is your goal is to compute a table wordCount: Map[String, Int]
of the form

Map(wl -> cl, w2 -> c2, ..., wn —> cn)

where ci is the number of times the word wi appears in documents across the Web. Fill in the blanks below to
show how mapReduce. can be used to compute the word frequency table wordCount:

val wordcount = {

val fmap

val fred =

mapReduce (wwwdocs, fmap, fred)

CSE 130, Spring 2012 Final Exam Page 8 of ??

3. [?? points] We will write several Scala functions to do simple manipulation of images represented by type
type Image = List[List[Int]]

i.e. lists of lists of integers, with each integer representing a pixel. For example, the following would be a simple image
of a smiley face.

val imgl = List (List (11, 0, 12)
, List(0, 0, 0)
, List (13, 0, 14)
, List (15, 16, 17))

We can refer to each pixel of the image by its horizontal x and vertical y coordinate. The top left corneris (0, 0) and
coordinates increase to the right and down. We can access coordinate (x,y) of img: Image as img (y) (x)

(a) [5 points] Fill in the body of the function square, which takes an image, and squares each integer in it. For

example,
scala> square (imgl)
res: Image = List (List (121, 0, 144)
, List(O, 0, 0)
, List (169 0, 196)
, List (225, 256, 289))

Fill in the blanks below to obtain an implementation of square .

def square(img: Image) : Image = {
for (<-)
yield

}

(b) [10 points] Next, fill in the body of the function crop, such that crop (img, x1, yl, x2, y2) returns an
image which only contains the pixels from img at coordinates (x,y),wherex1 <= x < x2andyl <= y < y2.
(You can assume that all such coordinates exist in img.) For example,

scala> crop(imgl,0,1,2,4)
res: Image = List(List (O, 0)
, List (13, 0)
, List (15, 16))
Fill in the blanks below to obtain an implementation of crop .

def crop(img: Image, x1l:Int, yl: Int, x2:Int, y2: Int): Image = {

for (<-)

yield

CSE 130, Spring 2012 Final Exam Page 9 of 2?

Hint: For a list xs the call xs.slice (1o, hi) returns the sub-list of the 1o, lo+1, ..., hi-1-thele-
ments of xs For example,

scala> List (0, 10, 20, 30, 40, 50, 60, 70).slice(2, ©6)

res: List[Int] = List (20, 30, 40, 50)

(c) [10 points] Next, let us write a helper function zip. Given lists 11 and 12, zip (11, 12) returns a list of pairs.
The nth element of the returned list is a pair consisting of the nth element of 11 and the nth element of 12. If one of
the lists is smaller than the other, the returned list contains pairs only for indices that both lists have. For example,

scala> zip(List(1,2,3), List(4,5,6))
res: List[Int] = List((1, 4), (2, 5), (3, 6))

scala> zip(List(1,2,3), List(4,5))

res: List[Int] = List((1, 4), (2, 5))
Fill in the blanks below to obtain an implementation of zip .

def zip[A] (11l: List[A], 12: List[B]): List[(A, B)] = {

}

(d) [10 points] Given two images imgl and img2 of the same size, add (imgl, img2) returns an image where
each pixel is the sum of the corresponding pixels from imgl and img2. For example,

scala> add(imgl, imgl)

res: Img = List(List (22, 0, 24),
List(0, 0, 0),
List (26, 0, 28),
List (30, 32, 34))

Fill the implementation of add_imgs below.
Hint: You may need another call to zip ...

def add(imgl: Image, img2: Image): Image = {

for ((rl, r2) <- zip(imgl, img2))

yield

CSE 130, Spring 2012 Final Exam Page 10 of 2?

4. [?? points] In this question, you will implement integer sorting in Prolog in two different ways. First, we will use a
simple approach, which is inefficient, and then we will implement a more efficient merge sort.

Note: In Prolog, the less-than-or-equal operator is =<.

(a)

(b)

[5 points] Fill in the implementation of the sorted predicate below. The predicate sorted (L) should hold if L.
is sorted in increasing order. For example:

?— sorted([]) .

true.

?— sorted([10]).

true.

?- sorted([1,2,3,3,4]).

true.

?— sorted([10,2,3,3,4]).

false.
Fill in the skeleton below (the first two lines are for base cases, and note that [A, B| T] matches a list where the
first two elements are A and B, and where T is the rest of the list):

)

% Base Case 1

sorted ()

o)

% Base Case 2

sorted ()

o)

% Inductive Case

sorted ([X1, X2 | TJ])

[5 points] The predicate sort (L1, L2) holds if L2 is a sorted version of L1. For example:
?— sort([4,1,3,2], L).
L =11, 2, 3, 4].

Fill in the implementation of sort below, using the sorted predicate from part (a).

sort (L1, L2) :-—

Hint: You may use the built-in predicate permutation, which takes two lists and returns true if the two lists
contain the same elements, but possibly in a different order. For example,

?— permutation([1,3,5], X).

X = [1, 3, 51 ;
X = [1, 5, 3] ;
X [3, 1, 51 ;
X = [3, 5, 11 ;
X =[5, 1, 31 ;
X =[5, 3, 1] ;

~

CSE 130, Spring 2012 Final Exam Page 11 of 2?

?— permutation([1l,3, 31, X).

X (1, 3, 31 ;
X (1, 3, 31 ;
X = [31 l/ 3] 7
X = [3, 3, 11 ;
X (3, 1, 31 ;
X = [3, 3, 11 ;
false

(c) [10 points] In the previous parts, we implemented a simple sort predicate, but with some cheating, as we used
permutation. Now, we will implement mergesort from scratch.

First, we need to implement split. The predicate split (L1, L2, L3) holds if L2 contains the even-indexed
elements of L1 (counting from 0) and L3 contains the odd-indexed elements of L1. For example:

?— split ([0], X, Y).

X = [0],

Y = [].

?- split ([0,1,21, X, Y).
X = [0, 27,

Y = [1].

?- split([0,1,2,3,4,5,6], X, Y).
X = [0, 2, 4, 6],
Y = [1, 3, 5].

and, by the awesomeness of Prolog,

?- split (X, 1[0,1,2], [10,11,12]).
X = [0, 10, 1, 11, 2, 12].

Fill in the implementation of split below:

% Base Case 1

split (’ ’)

[o)

% Base Case 2

split (, ')

o)

% Inductive Case

split (, ')

(d) [10 points] The next step is to implement me rge, which takes two sorted lists and returns a sorted list containing
all the elements of both input lists. Here is an OCaml implementation of merge that you need to match in Prolog:

CSE 130, Spring 2012 Final Exam Page 12 of 2?

let rec merge xs ys =
match (xs, ys) with

(01, 2) —> ys

I 11) -> Xs

| (x::xs’, y::ys’) —> if x <=y
then x :: (merge xs’ ys)
else y :: (merge xs ys’)

The merge predicate in Prolog takes three parameters: merge (L1, L2, L3) holds if L3 is the result of merg-
ing the sorted lists L1 and L2 (meaning you can assume that L1 and L2 are sorted). For example:

?- merge([1l, 101, [3, 4, 20], L).
L = [1, 3, 4, 10, 20]

Fill in the implementation of merge below:

[o)

% Base Case 1

merge([], Ys, Res) T -

[o)

% Base Case 2

merge (Xs, [], Res) .

o

% Inductive Case 1

merge (, ,) -

o)

% Inductive Case 2

merge (, ,) -

(e) [10 points] Finally, you will use split and merge to implement merge sort. As a reminder, here is an Ocaml
implementation:

match xs with

let rec merge_sort xs
1 > 11
[[x] —> [x]

-> let ys, zs = split xs in
merge (merge_sort ys) (merge_sort zs)

Define a predicate merge_sort (L, S) which holds if S is a sorted version of L. For example:

?- merge_sort ([20,3,6,2,7], X).
X = [2, 3, 6/ 7/ 20]

Fill in the implementation of merge_sort below:

CSE 130, Spring 2012 Final Exam Page 13 of 2?

o)

% Base Case 1

merge_sort (,) .

% Base Case 2

merge_sort (’) .

% Inductive Case

merge_sort (L, S) :-

CSE 130, Spring 2012

Final Exam

Page 14 of ??

5. [?? points] For this problem, you will write Prolog code that checks whether a given ML expression is well-scoped,
that is, that every variable that is used in the expression is bound in the expression. That is, your prolog code will
check, just by looking at the code, not by running it, whether or not your nanoML implementation would have thrown a

Nano.MLFailure

"Variable not bound:

. . " exception.

First, we shall encode nanoML expressions as Prolog terms via the following grammar.

The table below shows several examples of Ocaml expressions, the Prolog term encoding that expression.

expr =

| const(i)

| var(x)

| plus(expr,expr)

| leq(expr,expr)

| ite(expr,expr)

| letin(var(x),expr,expr)
| fun(var(x),expr)

| app(expr, expr)

ML Expression ‘ Prolog Expression Term

2 const (2)

X var (x)

2 + 3 plus (const (2),const (3))
2 <= 3 leg(const (2),const (3))

fun x —> x <= 4

fun (var (x), leg(var (x),const (4)))

fun x -> fun y —>
if x then y else 0

fun (var (x), fun(var (y),

ite(var (x),var (y),const (0))))

let x = 10 in x

letin(var (x),const (10), var (x))

fun x —->
let v = x in
y ty

fun (var (x),
letin(var(y),var (x)
plus (var (y),var(y))))

(a) [10 points] Write a Prolog predicate reads (E, X) thatis true if X is read anywhere inside the expression E. When
you are done, you should get the following behavior:

?_

reads (plus (const (2),const (3)), Xx).

False.

reads (letin(var(x),const (1),var(a)), X).

X = a
True.

reads (fun (var (x) ,plus (var(a),var(b))), X).

X = a;
X = b;
True.

reads (fun (var (b) ,plus (var(a),var(b))), X).

X = a;
X = b;
True.

CSE 130, Spring 2012 Final Exam Page 15 of 2?

Write your solution by filling in the grid below. Hint: If you need an ”Or”, you may add extra rules where needed,
(or better, just use the ; operator.)

reads (const (I), X) :-— 0 =1. i.e. false

o\
'_l

reads (var(X), Y) :-

reads (plus (E1,E2), X) :-

reads (leq(E1l,E2), X) :—

reads (ite (E1,E2,E3), X) :—

reads (letin(var(Y),E1l,E2), X) :—

reads (fun(var (Y),E), X) :—

reads (app (E1,E2), X) :—

(b) [15 points] Write a Prolog predicate wellscoped (E) that is true if E is well-scoped, that is, each variable that
is read is previously bound. When you are done, you should get the following behavior:

?7— wellscoped(plus (var(a),const (3))) .
False.

?— wellscoped(letin(var (a),const (1), plus(var(a),const(3)))).
True.

?— wellscoped(fun (var (b),plus(var(a),var(b)))) .
False.

?— wellscoped(fun (var (b), fun(var(a), plus(var(a),var(b))))).
True.

?— wellscoped(app (fun (var (a),plus(var(a),const(1l))), wvar(a))).

CSE 130, Spring 2012 Final Exam Page 16 of 2?

False.

?— wellscoped(app (fun (var (a),plus(var(a),const (1))),
letin(var(a),const (1), var(a)))).

True.
To define wellscoped, write a helper predicate helper (E, Xs) which is true if every variable that is read in
E either occurs in Xs or occurs bound inside E. With this, you can define wellscoped as:
wellscoped(E) :— helper(E, []).
Write your definition for he 1per by filling in the grid below.
Hint: You need not use reads. You may use the built-in predicate member (X, Ys) which returns true if the
atom X appears in the list Ys.

helper (const (I), Xs) :- 0 = 0. % i.e. true

helper (var(X), Xs) :-

helper (plus(E1,E2), Xs) :-

helper (leq(El,E2), Xs) :-

helper (ite(E1,E2,E3), Xs) :—

helper (letin(var(Y),El,E2), Xs) :—

helper (fun(var(Y),E), Xs) :—

helper (app (E1,E2), Xs) :-

