Name:

ID :

CSE 130, Winter 2012: Midterm Examination

Feb 14th, 2012

Do not start the exam until you are told to.

This is a open-book, open-notes exam, but with
no computational devices allowed (such as calcula-
tors/cellphones/laptops).

Do not look at anyone else’s exam. Do not talk to
anyone but an exam proctor during the exam.

Write your answers in the space provided.

Wherever it gives a line limit for your answer, write
no more than the specified number of lines. The rest
will be ignored.

Work out your solution in blank space or scratch pa-
per, and only put your answer in the answer blank
given.

The points for each problem are a rough indicator of
the difficulty of the problem.

Good luck!

TOTAL

45 Points

15 Points

25 Points

0 Points

85 Points

1. [45 points | We are going to implement merge sort, in small steps.
a. [15 points | First, you will write a function split : ’a list -> ’a list * ’a list. This function
splits a given list in two parts along the middle. Here are examples of it running:
split [23;1;8;3];;
- : int list * int list

([23; 11, [8; 31D

split [23;1;8;3;6];;

- : int list * int list ([23; 11, [8; 3; 61)

split [23;1;8;3;6;20];;
- : int list * int list = ([23; 1; 8], [3; 6; 20])

Split ["a";"b";"c"] ;;
- : string list * string list = (["a"], ["b"; "c"1)

split ["a"];;
- : string list * string list

a, a"1n

To do this, you will use fold_left, whose type is (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a. You
can also assume a function length: ’a list -> int which returns the length of a list. Now, fill in the
implementation of split below:

let rec split 1 =
(* additional let declarations if you need any *)

let (_, 11, 12) = List.fold_left fold_fn base 1 in

(11,12)

b. [15 points] You will now write a merge function of type ’a list -> ’a list -> ’a list. This
function takes two lists that are already sorted using the ordering <=, and merges them into a sorted list.
Here are examples of merge:

merge [2;4;6;8] [1;3;5];;
- : int list = [1; 2; 3; 4; 5; 6; 8]

merge [2;10;20] [1;2;3;4;5;8;10;12];;
- : int list = [1; 2; 2; 3; 4; 5; 8; 10; 10; 12; 20]

Fill in the implementation of merge below:

let rec merge 11 12 =
match (11, 12) with

O

c. [15 points | We are now ready to write merge_sort, whose type is a list -> ’a list. You should
use the split and merge functions above to implement merge_sort. Recall that merge sort works by
splitting the input list in two, recursively sorting the two sub-lists, and then merging the two results of
the recursive calls into a sorted list. Here are examples of running merge_sort:

merge_sort [2;10;3;2;1];;
- : int list = [1; 2; 2; 3; 10]

merge_sort [-10;0;10;-20;100;-100];;
- : int 1list [-100; -20; -10; 0; 10; 100]

Fill in the implementation of merge_sort below:

let rec merge_sort 1 =

2. [15 points] Assume you are given the following two functions:

explode : string -> char list
implode : char list -> string

Given a string s, (explode s) returns the list of characters in the string, and given a list of characters 1,
(implode 1) returns a string that contains all the characters in the list. For example:

explode "abc";;
- : char list = [’a’; ’b’; ’c’]

implode [’a’; ’b’; ’c’l;;
- : char list = "abc"

Also, assume that you have the traditional map, with type (’a -> ’b) -> ’a list -> ’b list. Using map,

R)

explode and implode, write a function replace: string -> string that replaces the hyphen character, -,
with space, ’ ”:

3. [25 points]
a. [13 points] In this problem you are going to write a function:
app : (’a -> ’b) list -> ’a -> ’b list

Given a list of functions 1, (app 1 x) returns a list where each element of the list is the application of
the corresponding function from 1 to x. For example:

let incr x = x+1;;

val incr : int -> int = <fun>
let decr x = x-1;;
val decr : int -> int = <fun>

app [incr;decr] 10;;
- : int list = [11; 9]

Implement app below using map:

b. [12 points | Now, consider the following code:

let [£f1;£2] = app [(=);()] 2;;
val f1 : int -> bool = <fun>
val £f2 : int -> bool = <fun>

For each expression below, write down what it evaluates to:

(f1 2)

(f1 3)

(f2 1)

(f2 2)

(f2 3)

4. [0 points] Circle the correct answer. When Sorin was a kid, he did which of the following sports:
1. Snow Rugby
2. Luging
3. Curling
4. Figure Skating
5. Speed Skating

