
Prolog

Syntax
Prolog programs are constructed from terms: constants, variables, or

structures.

Constants can be either atoms or numbers:

• Atoms are strings of characters starting with a lowercase letter or
enclosed in apostrophes.

• Numbers are strings of digits with or without a decimal point and a
minus sign.

Variables are strings of characters beginning with an uppercase letter or
an underscore.

Structures consist of a functor or function symbol, which looks like an
atom, followed by a list of terms inside parentheses, separated by
commas. Structures can be interpreted as predicates (relations):
likes(john,mary).
male(john).
sitsBetween(X,mary,helen).

Figure A.1 depicts the following structure as trees:
person(name('Kilgore','Trout'),date(november,11,1922))
tree(5, tree(3,nil,nil), tree(9,tree(7,nil,nil),nil))

COMP780 Semantics Prolog

 2

A Prolog program is a sequence of statements − clauses − of the form

P0 :- P1, P2, …, Pn.

where each of P0, P1, …, Pn is an atom or a structure.

A period terminates every clause.

A clause can be read declaratively as

P0 is true if P1 and P2 … Pn are true

or procedurally as

To satisfy goal P0, satisfy goal P1 and then P2 and then … and then Pn.

P0 is the head goal; the conjunction of goals P1, P2, …, Pn is the body of
the clause.

A clause without a body

P.

is a unit clause or fact and means

P is true.

or

goal P is satisfied.

A clause without a head,

?- P1, P2, …, Pn.

is a goal clause or query and means

Are P1 and P2 and … Pn true?

or

Satisfy goal P1 and then P2 and then … and then Pn.

A Prolog program consists of
• a database of facts about the given information and
• conditional clauses or rules about how additional info. can be

deduced from the facts.

A query sets the Prolog interpreter into action.

COMP780 Semantics Prolog

 3

BNF Syntax for Prolog

Prolog contains a large set of predefined predicates and notational

variations (e.g., infix symbols) not defined in this grammar.

And it allows a special syntax for lists − see below.

COMP780 Semantics Prolog

 4

A Prolog Example
We develop an example incrementally.

User queries are shown in boldface followed by the response by the
Prolog interpreter.

Comments start with the symbol % and continue to the end of the line.

Some facts:

parent(chester,irvin).
parent(chester,clarence).
parent(chester,mildred).
parent(irvin,ron).
parent(irvin,ken).
parent(clarence,shirley).
parent(clarence,sharon).
parent(clarence,charlie).
parent(mildred,mary).

Some queries:

?- parent(chester,mildred).
yes
?- parent(X,ron).
X = irvin
yes
?- parent(irvin,X).
X = ron;
X = ken; % The user-typed semicolon asks the
no % system for more solutions.
?- parent(X,Y).
X =chester
Y = irvin % System will list all of the parent
yes % pairs, one at a time,if semicolons
 % are entered.

COMP780 Semantics Prolog

 5

Additional facts:
male(chester).
female(mildred).
male(irvin).
female(shirley).
male(clarence).
female(sharon).
male(ron).
female(mary).
male(ken).
male(charlie).

Additional queries:

?- parent(clarence,X), male(X).
X = charlie
yes
?- male(X), parent(X,ken).
X = irvin
yes
?- parent(X,ken), female(X).
no

Prolog obeys the “closed world assumption” that presumes that any
predicatethat cannot be proved must be false.

?- parent(X,Y), parent(Y,sharon).
X = chester
Y = clarence
yes

COMP780 Semantics Prolog

 6

These queries suggest definitions of several family relationships.

Some rules:
father(X,Y) :- parent(X,Y), male(X).
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).
paternalgrandfather(X,Y) :- father(X,Z),
 father(Z,Y).
sibling(X,Y) :- parent(Z,X), parent(Z,Y).

The scope of a variable in Prolog is solely the clause in which it
occurs.

Additional queries:

?- paternalgrandfather(X,ken).
X = chester
yes
?- paternalgrandfather(chester,X).
X = ron;
X = ken;
X = shirley; % Note the reversal of the roles
X = sharon; % of input and output.
X = charlie;
no
?- sibling(ken,X).
X = ron;
X = ken;
no

The inference engine concludes that ken is a sibling of ken since
we have both
parent(irvin,ken) and
parent(irvin,ken)

To avoid this consequence, the description of sibling needs to
be more carefully constructed.

COMP780 Semantics Prolog

 7

Predefined Predicates
1. The equality predicate = permits infix as well as prefix notation −

e.g.,

?- ken = ken.
yes
?- =(ken,ron).
no
?- ken = X. % Can a value be found for X to make
X = ken % it the same as ken?
yes % The equal operator represents the notion
 % of unification.

2. \+ (“not”) is a unary predicate:

\+ P is true if P cannot be proved false and false if it can −
e.g.,

?- \+ (ken=ron).
yes
?- \+ (mary=mary).
no

The closed world assumption − that any property not recorded in
the database isn’t true − governs how \+ works.

Since the behavior of \+ diverges from the logical not of
predicate calculus, we use \+ as little as possible (not at all in
the laboratory exercises).

COMP780 Semantics Prolog

 8

The following is a new sibling rule (the previous rule must be
removed):

sibling(X,Y) :- parent(Z,X), parent(Z,Y),
 \+ (X=Y).

Queries:
?- sibling(ken,X).
X = ron;
no
?- sibling(X,Y).
X = irvin
Y = clarence; % sibling is a symmetric relation.
X = irvin % 3 sets of siblings produce 6 answers.
Y = mildred;
X = clarence % The database allows 14 answers.
Y = irvin;
X = clarence
Y = mildred;
X = mildred
Y = irvin;
Y = mildred
X = clarence % No semicolon here.
yes

COMP780 Semantics Prolog

 9

A relation may be defined with several clauses:

closeRelative(X,Y) :- parent(X,Y).
closeRelative(X,Y) :- parent(Y,X).
closeRelative(X,Y) :- sibling(X,Y).

There’s an implicit or between the three definitions of the relation
closeRelative.

This disjunction may be abbreviated using semicolons as

closeRelative(X,Y) :-
 parent(X,Y) ; parent(Y,X) ; sibling(X,Y).

The three clauses (or single abbreviated clause) are said to define a
“procedure” named closeRelative.

The arity of this procedure is two, i.e., closeRelative takes
two arguments.

The identifier closeRelative may be used as a different
predicate with other arities.

COMP780 Semantics Prolog

 10

Recursion
Suppose we want to define a predicate “X is an ancestor of Y,” which

is true if

parent(X,Y) or

parent(X,Z) and parent(Z,Y) or

parent(X,Z), parent(Z,Z1), and parent(Z1,Y) or

…

A recursive definition is required to allow an arbitrary depth for the
definition.

The first case above serves as the basis for the recursive definition.

The remaining cases are handled by an inductive step.

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

To continue our example, we add some more facts:

parent(ken,nora). female(nora).
parent(ken,elizabeth). female(elizabeth).

Fig. A.3 shows the parent relation between the twelve people defined
in our database.

COMP780 Semantics Prolog

 11

Some queries:
?- ancestor(mildred,mary).
yes % because parent(mildred,mary).
?- ancestor(irvin,nora).
yes % because
 % parent(irvin,ken) and
 % ancestor(ken,nora) because parent(ken,nora).
?- ancestor(chester,elizabeth).
yes % because
 % parent(chester,irvin)
 % and ancestor(irvin,elizabeth)
 % because parent(irvin,ken) and
 % ancestor(ken,elizabeth)
 % because parent(ken,elizabeth).
?- ancestor(irvin,clarence).
no % because parent(irvin,clarence) is not provable
 % and,whoever is substituted for Z, it is
 % impossible to prove parent(irvin,Z) and
 % ancestor(Z,clarence).

All possibilities for Z are tried that make parent(irvin,Z)
true, namely
Z=ron and
Z=ken,

and both
ancestor(ron,clarence) and
ancestor(ken,clarence)

fail.

COMP780 Semantics Prolog

 12

Control Aspects
Since efficiency is a concern, Prolog interpreters follow a certain

deterministic strategy for discovering proofs.

1. The order in which the clauses defining a given predicate are

tested (the rule order or clause order) is top to bottom (as they
appear in the text of the program).

Rule order determines the order in which answers are found − e.g.,

ancestor2(X,Y) :- parent(X,Z), ancestor2(Z,Y).
ancestor2(X,Y) :- parent(X,Y).

?- ancestor(irvin,Y).
Y = ron, ken, nora, elizabeth
 % Four answers returned separately.
?- ancestor2(irvin,Y).
Y = nora, elizabeth, ron, ken
 % Four answers returned separately.

2. The left-to-right order in which terms (subgoals) are listed on the

RHS of a rule (the goal order) is the order in which the interpreter
tries to solve them.

Goal order determines the shape of the search tree that the

interpreter explores.

COMP780 Semantics Prolog

 13

A poor choice of goal order may give a search tree with an infinite
branch down which the interpreter gets trapped − e.g.,

ancestor3(X,Y) :- ancestor3(Z,Y), parent(X,Z).
ancestor3(X,Y) :- parent(X,Y).

?- ancestor(irvin,elizabeth).
yes
?- ancestor3(irvin,elizabeth).

This query invokes a new query
ancestor3(Z,elizabeth), parent(irvin,Z).

which invokes
ancestor3(Z1,elizabeth), parent(Z,Z1),
parent(irvin,Z).

which invokes
ancestor3(Z2,elizabeth), parent(Z1,Z2),
parent(Z,Z1), parent(irvin,Z).

which invokes …

The eventual result is a message such as
“Out of local stack during execution; execution aborted.”

The problem with this last definition of the ancestor relation is the

left recursion with uninstantiated variables in the first clause.

If possible, the leftmost goal in the body of a clause should be
nonrecursive so that a pattern match occurs and some variables
are instantiated before a recursive call is made.

COMP780 Semantics Prolog

 14

Lists
A list of terms can be represented between brackets − e.g., [a,b,c].

Here the head of the list is a, the tail is [b,c].

The tail of, e.g., [a] is [] (the empty list).

Lists may contain lists as elements − e.g., [a,[b,1],3,[c]] is a
list of four elements.

As a special form of direct pattern matching, [H|T] matches any list
with at least one element:
• H matches the head of the list,

• T matches the tail.

A list of elements is permitted to the left of the vertical bar − e.g.,
[X,a,Y|T] matches any list with at least three elements whose
second element is the atom a:

• X matches the first element,

• Y matches the third element, and

• T matches the rest of the list (possibly empty) after the third
element.

Using these pattern matching facilities, values can be specified as the
intersection of constraints instead of by direct assignment.

Lists are ordinary structures with syntactic sugar added.

The notation abbreviates terms constructed with the predefined
“.” function symbol and the special atom [].

E.g.,
[a,b,c] abbreviates .(a,.(b,.(c,[]))).
[H|T] abbreviates .(H,T).
[a,b|X] abbreviates .(a,.(b,X)).

COMP780 Semantics Prolog

 15

List Processing
1. Define last(L,X) to mean “X is the last element of the list L”.

The last element of a singleton list is its only element.
last([X], X).

The last element of a list with two or more elements is the last item
in its tail.
last([H|T], X) :- last(T, X).

?- last([a,b,c], X).
X = c
yes
?- last([], X).
no

The “illegal” operation of requesting the last element of an empty
list simply fails, allowing the caller to try alternative subgoals.

Predicate last acts as a generator when run “backwards”:

?- last(L, a).
L = [a];
L = [_5, a]; % The underline indicates system-
L = [_5, _9, a]; % generated variables.
L = [_5, _9, _13, a] …

Variable H in the definition of last plays no part in the body of the
rule − it doesn’t need a name.

Prolog has anonymous variables, denoted by an underscore:

last([_|T],X) :- last(T,X).

Another example:

father(F) :- parent(F,_), male(F).

The scope of an anonymous variable is its single occurrence.

(The authors prefer using named variables for documentation.)

COMP780 Semantics Prolog

 16

2. Define member(X,L) to mean “X is a member of the list L”.

For this predicate we need two clauses,

• one as a basis case and

• the second to define the recursion that corresponds to an
inductive specification.

The predicate succeeds if X is the first element of L.
member(X, [X|T]).

If the first clause fails, check if X is a member of the tail of L.
member(X, [H|T]) :- member(X,T).

If the item is not in the list, the recursion eventually tries a query
of the form member(X,[]).

This fails since the head of no clause for member has [] as
second argument.

3. Define delete(X,List,NewList) to mean

“The variable NewList is to be bound to a copy of List with
all instances of X removed”.

When X is removed from an empty list, we get the same empty list.
delete(X,[],[]).

When an item is removed from a list with that item as its head, we
get the list that results from removing the item from the tail of
the list (ignoring the head).
delete(H,[H|T],R) :- delete(H,T,R).

If the previous clause fails, X is not the head of the list, so we
retain the head of L and take the tail that results from removing
X from the tail of the original list.
delete(X,[H|T],[H|R]) :- delete(X,T,R).

COMP780 Semantics Prolog

 17

4. Define union(L1,L2,U) to mean

“The variable U is to be bound to the list that contains the
unionof the elements of L1 and L2”.

If the first list is empty, the result is the second list.
union([],L2,L2). % clause 1

If the head of L1 is a member of L2, it may be ignored since a
union does not retain duplicate elements.
union([H|T],L2,U) :-
 member(H,L2), union(T,L2,U). % clause 2

If the head of L1 is a not member of L2 (clause 2 fails), it must be
included in the result.
union([H|T],L2,[H|U]) :-
 union(T,L2,U). % clause 3

In the last two clauses, recursion is used to find the union of the
tail of L1 and the list L2.

COMP780 Semantics Prolog

 18

5. Define concat(X,Y,Z) to mean

“The concatenation of lists X and Y is Z”.
In the Prolog literature, this predicate is frequently called append.

concat([], L, L). % clause a
concat([H|T], L, [H|M]) :-
 concat(T, L, M). % clause b

?- concat([a,b,c], [d,e], R).
R = [a,b,c,d,e]
yes

The inference that produced this answer is illustrated by the

search tree in Figure A.4.

COMP780 Semantics Prolog

 19

When the last query succeeds, the answer is constructed by
unwinding the bindings:

R = [a | M]
 = [a | [b | M1]] = [a,b | M1]
 = [a,b | [c | M2]] = [a,b,c | M2]
 = [a,b,c | [d,e]] = [a,b,c,d,e].

COMP780 Semantics Prolog

 20

Figure A.5 shows the search tree for another application of
concat using semicolons to generate all the solutions.

COMP780 Semantics Prolog

 21

6. Define reverse(L,R) to mean “the reverse of list L is R”.
reverse([], []).
reverse([H|T], L) :- reverse(T, M),
 concat(M, [H], L).

In executing concat, the depth of recursion corresponds to the

number of times that items from the first list are attached (cons)
to the front of the second list.

So the work done by concat is proportional to the length of
the first list.

When reverse is applied to a list of length n, the concat
calls have first arguments of lengths, n-1, n-2, …, 2, 1.

So the complexity of reverse is proportional to n2.

7. An improved reverse using an accumulator:

rev(L, R) :- help(L, [], R).
help([], R, R).
help([H|T], A, R) :- help(T, [H|A], R).

Predicate help is called n times if the original list is of length n.

So the complexity of rev is proportional to n.

Note that help is tail recursive.

COMP780 Semantics Prolog

 22

Sorting in Prolog
We need relations for comparing numbers (equal, “=:=“, and not

equal, “=\=“, are discussed later):

M < N, M =< N, M > N, M >= N

These require that both operands be numeric atoms or arithmetic
expressions whose variables are bound to numbers.

Insertion Sort
We sort the tail T of a list (recursively) then insert the head X into its

proper place in the tail.

insertSort([], []).
insertSort([X|T], M) :- insertSort(T, L),
 insert(X, L, M).

insert(X, [H|L], [H|M]) :- H<X, insert(X, L, M).
insert(X, L, [X|L]).

The clauses for insert are order dependent.

We remove this dependence by distinguishing the case where L is

empty and explicitly stating the conditions for both remaining
cases.

insert(X, [], [X]).
insert(X, [H|L], [X,H|L]) :- X=<H.
insert(X, [H|L], [H|M]) :- X>H, insert(X,L,M).

COMP780 Semantics Prolog

 23

Quick Sort
We split the list into those items less than or equal to the pivot and

those greater than the pivot.

We arbitrarily chose the first number in the list as the pivot.

After the two lists are sorted (recursively), they are concatenated with

the pivot in the middle to form an overall sorted list.

Splitting is done by the predicate

partition(P, List, Left, Right)

where
P and List are inputs,
P is a pivot for list List,

Left and Right are outputs,
Left gets bound to the list of all elements in List less than

or equal to P, and
Right gets bound to the list of all elements in List greater

than P.

partition(P, [], [], []).
partition(P, [A|X], [A|Y], Z) :- A=<P,
 partition(P, X, Y, Z).
partition(P, [A|X], Y, [A|Z]) :- A>P,
 partition(P, X, Y, Z).

quickSort([], []).
quickSort([H|T], S) :-
 partition(H, T, Left, Right),
 quickSort(Left, NewLeft),
 quickSort(Right, NewRight),
 concat(NewLeft, [H|NewRight], S).

COMP780 Semantics Prolog

 24

The Logical Variable
A variable in an imperative language is not the same concept as a

variable in mathematics:

1. A program variable refers to a memory location whose content

may change.

2. A variable in mathematics stands for a value that, once

determined, won’t change.

E.g., the equations x + 3y = 11 and 2x - 3y = 4 specify value for
x and y (viz., x = 5 and y = 2).

A variable in Prolog is called a logical variable; it acts like a
mathematical variable.

3. Once a logical variable is bound to a value (an instantiation of it),

the binding can be altered only if the pattern matching that caused
the binding is undone by backtracking.

4. The destructive assignment of imperative languages can’t be done

in logic programming.

5. Terms in a query change only by having variables filled in for the

first time.

6. An iterative accumulation of a value is got by having each

instance of a recursive rule take the values passed to it and
compute values for new variables that are then passed to another
call.

7. Since a logical variable is “write-once”, it is more like a constant

identifier with a dynamic defining expression as in Ada (or
Pelican) than a variable in an imperative language.

COMP780 Semantics Prolog

 25

The power of logic programming comes from using the logical
variable in structures to direct the pattern matching.

Results are constructed by binding values to variables according to

the constraints imposed by the structures of the arguments of
the goal term and the head of the clause being matched.

The order that variables are constrained is generally not critical.

The construction of complex values can be postponed as long as
logical variables hold their places in the structure being
constructed.

COMP780 Semantics Prolog

 26

Equality and Comparison in Prolog

Unification
T1 = T2 succeeds if term T1 can be unified with term T2.

| ?- f(X,b) = f(g(a),Y).
X = g(a)
Y = b
yes

Numerical Comparisons
=:=, =\=, <, >, =<, >=

Evaluate both expressions and compare the results.

| ?- 5<8.
yes
| ?- 5 =< 2.
no
| ?- N =:= 5.
! Error in arithmetic expression: not a number
!(N not instantiated to a number)
no
| ?- N = 5, N+1 =< 12.
N = 5 % The unification N = 5 causes a binding
 % of N to 5.
yes

COMP780 Semantics Prolog

 27

Forcing Arithmetic Evaluation (is)
N is Exp

Evaluate the arithmetic expression Exp and try to unify the resulting
number with N, a variable or a number.

| ?- M is 5+8.
M = 13
yes
| ?- 13 is 5+8.
yes
| ?- M is 9, N is M+1.
M = 9
N = 10
yes
| ?- N is 9, N is N+1.
no % N is N+1 can never succeed.
| ?- 6 is 2*K.
! Error in arithmetic expression: not a number
! (K not instantiated to a number)
no

Consider the definition of factorial:

The factorial of 0 is 1.

fac(0,1).

The factorial of N > 0 is N times the factorial of N-1.

fac(N,F) :- N>0,
 N1 is N-1,
 fac(N1,R),
 F is N*R.

| ?- fac(5,F).
F = 120
yes

COMP780 Semantics Prolog

 28

Identity
X == Y

Succeed if the terms currently instantiated to X and Y are literally
identical, including variable names.

| ?- X=g(X,U), X==g(X,U).
yes
| ?- X=g(a,U), X==g(V,b).
no
| ?- X\==X. % “X \== X” is the negation of “X == X”
no

Term Comparison (Lexicographic)
T1 @< T2, T1 @> T2, T1 @=< T2, T1 @>= T2

| ?- ant @< bat.
yes
| ?- @<(f(ant),f(bat)). % infix predicates may
yes % also be entered as prefix

COMP780 Semantics Prolog

 29

Term Construction
T =.. L

L is a list whose head is the atom corresponding to the principal

functor of term T and whose tail is the argument list of that functor
in T.

“=..” is pronounced “univ.”

| ?- T =.. [@<,ant,bat], T. % Some versions of
T = ant@<bat % require call(T)
yes
| ?- T =.. [@<,bat,bat], T.
no
| ?- T =.. [is,N,5], T.
N = 5,
T = (5 is 5)
yes
| ?- member(X,[1,2,3,4]) =.. L.
L = [member,X,[1,2,3,4]]
yes

COMP780 Semantics Prolog

 30

Input and Output Predicates
get0(N)

N is bound to the ascii code of the next character from the current

input stream (normally the terminal keyboard).

When the current input stream reaches its end of file, a special
value is bound to N and the stream is closed.

The special value depends on the Prolog system, but two
possibilities are:

26, the code for control-Z or
-1, a special end of file value.

put(N)

The character whose ascii code is the value of N is printed on the

current output stream (normally the terminal screen).

see(F)

The file whose name is the value of F becomes the current input

stream.

seeing(F)

F is bound to the name of the current input file.

seen

Close the current input stream.

COMP780 Semantics Prolog

 31

tell(F)

The file whose name is the value of F becomes the current output
stream.

telling(F)

F is bound to the name of the current input file.

told

Close the current output stream.

read(T)

The next Prolog term in the current input stream is bound to T.

The term in the input stream must be followed by a period.

write(T)

The Prolog term bound to T is displayed on the current output
stream.

tab(N)

N spaces are printed on the output stream.

nl

Newline prints a linefeed character on the current output stream.

abort

Immediately terminate the attempt to satisfy the original query and
return control to the top level.

COMP780 Semantics Prolog

 32

name(A,L)

A is a literal atom or a number, and L is a list of the ascii codes of

the characters comprising the name of A.

| ?- name(A,[116,104,101]).
A = the
| ?- name(1994,L).
L = [49, 57, 57, 52]

call(T)

Assuming T is instantiated to a term that can be interpreted as a
goal, call(T) succeeds if and only if T succeeds as a query.

Some Prolog systems use simply T instead of call(T).

