Prolog

Syntax

Prolog programs are constructed from terms: constants, variables, or
structures.

Constants can be either atoms or numbers:

» Atoms are strings of characters starting with a lowercase letter or
enclosed in apostrophes.

* Numbers are strings o digits with or without a decimal point and a
minus sign.

Variablesare strings of characters beginning with an uppercase letter or
an underscore.

Structuresconsist of a functor or function symbol, which looks like an
atom, followed by a list of terms inside parentheses, separated by
commas. Structures can be interpreted as predicates (relations):

i kes(j ohn, mary).
mal e(j ohn) .
si t sBet ween(X, mary, hel en) .

Figure A.1 depicts the following structure as trees.
person(name(' Kil gore',' Trout'), dat e(novenber, 11, 1922))
tree(5, tree(3,nil,nil), tree(9,tree(7,nil,nil),nil))

5

name date nil nil 7 nil
'Kilgore' Trout” november 11 1922 nil nil

Figure A.1: Structured objects

COMP780 Semantics Prolog

A Prolog program is a sequence of statements - clauses - of the form
Po :- Py, Py, Ya, P,
where each of Py, Py, ¥4, P,, iSan atom or a structure.
A period terminates every clause.

A clause can be read declaratively as
Py istrueif P; and P, ¥4 P, aretrue
or procedurally as
To satisfy goa Py, satisfy goal P, and then P, and then %4 and then P,.

Py isthe head goal; the conjunction of goals Py, P,, ¥4, P, is the body of
the clause.

A clause without a body
P.
ISaunit clause or fact and means
Pistrue.
or
goa P issatisfied.

A clause without a head,
?- P1, Py, Y, P,
Isagoal clause or query and means
AreP; and P, and ¥4 P, true?
or
Satisfy goa P, and then P, and then ¥4 and then P,,.

A Prolog program consists of
a database of facts about the given information and

conditional clauses or rules about how additiona info. can be
deduced from the facts.

A query setsthe Prolog interpreter into action.

COMP780 Semantics Prolog

BNF Syntax for Prolog

<program> ::= <clause list> <query> | <query>
<clause list> ::= <clause> | <clause list> <clause>
<clause> ::= <predicate> . | <predicate> :- <predicate list> .
<predicate list> ::= <predicate> | <predicate list> , <predicate>
<predicate> ::= <atom> | <atom> (<term list>)
<term list> ::= <term> | <term list> , <term>
<term> ::= <numeral> | <atom> | <variable> | <structure>
<structure> ::= <atom> (<term list>)
<query> ::= ?- <predicate list> .
<atom> ::= <small atom> | ' <string> "'
<small atom> ::= <lowercase letter> | <small atom> <character>
<variable> ::= <uppercase letter> | <variable> <character>
<lowercase letter> ::=a|b|c|d|...|x|y|z
<uppercase letter> :=A|B|C|D|... | X|Y|Z|_
<numeral> ::= <digit> | <numeral> <digit>
<digit>::=0]1|2|3|4|5|6|7|8|9
<character> ::= <lowercase letter> | <uppercase letter>

| <digit> | <special>
<special> =+ |-« |[[|\|*|~]|:|.|? | @|#|$| &

<string> ::= <character> | <string> <character>

Figure A.2: BNT for Prolog

Prolog contains a large set of predefined predicates and notational
variations (e.g., infix symbols) not defined in this grammar.

And it allows a special syntax for lists- see below.

COMP780 Semantics Prolog

A Prolog Example
We develop an example incrementally.

User queries are shown in boldface followed by the response by the
Prolog interpreter.

Comments start with the symbol %and continue to the end of the line.

Some facts.
parent (chester,irvin).
par ent (chester, cl arence) .
parent (chester, ml dred).
parent (irvin,ron).
parent (i rvin, ken).
parent (cl arence, shirl ey).
par ent (cl arence, sharon).
parent (cl arence, charlie).
parent (m | dred, mary).

Some queries:
?- parent(chester,mldred).
yes
?- parent (X ron).
X=1irvin
yes
?- parent(irvin,X).
X = ron;
X = ken; % The user-typed sem col on asks the
no % system for nore sol utions.
?- parent(XY).
X =chest er
Y =1irvin %Systemw Il list all of the parent
yes % pairs, one at atine,if semcol ons

% ar e ent er ed.

COMP780 Semantics Prolog

Additional facts:
mal e(chester).
femal e(m | dred).
mal e(irvin).
femal e(shirl ey).
mal e(cl arence).
f emal e(sharon).
mal e(ron).
femal e(mary).
mal e(ken).
mal e(charlie).

Additional queries:

?- parent(clarence, X), nale(X).
X = charlie

yes

?- mal e(X), parent (X ken).
X =1irvin

yes

?- parent (X ken), femal e(X).
no

Prolog obeys the “closed world assumption” that presumes that any
predicatethat cannot be proved must be false.

?- parent (X Y), parent(Y, sharon).
chester
cl arence

<
I

COMP780 Semantics Prolog

These queries suggest definitions of severa family relationships.

Somerules:
father(X Y) :- parent(XY), nmale(X.
grandparent (X, Y) :- parent(X 2), parent(ZY).

pat ernal grandfather (X Y) :- father(X 2),
father(Z,Y).

sibling(XY) :- parent(Z, X), parent(ZY).

The scope of avariablein Prolog is solely the clause in which it
OCCUrs.

Additional queries:

?- pat er nal grandf at her (X, ken) .
X = chester

yes

?- paternal grandf at her (chester, X).

X = ron;

X = ken;

X =shirley; %Note the reversal of the roles
X = shar on; % of i nput and out put.
X = charlie;

no

?- sibling(ken, X).

X = ron;

X = ken;

no

The inference engine concludes that ken isasbling of ken since
we have both
parent (i rvin, ken) and
parent (i rvin, ken)

To avoid this consequence, the description of si bl i ng needsto
be more carefully constructed.

COMP780 Semantics Prolog

Predefined Predicates
1. The equality predicate = permits infix as well as prefix notation -
ed.,

?- ken = ken.

yes

?- =(ken, ron).

no

?- ken = X. % Can a value be found for X to nmake
X = ken % it the sane as ken?

yes % The equal operator represents the notion
% of unification.

2. \ + (“not”) isaunary predicate:

\' + P istrueif P cannot be proved false and falseif it can -

ed.,
?- \+ (ken=ron).
yes

?- \+ (mary=mary).
no

The closed world assumption - that any property not recorded in
the database isn’'t true- governs how \ + works.

Since the behavior of \+ diverges from the logical not of
predicate calculus, we use \+ as little as possible (not at al in
the laboratory exercises).

COMP780 Semantics Prolog

The following is a new gibling rule (the previous rule must be
removed):

sibling(XY) :- parent(Z, X), parent(ZY),
\+ (X=Y).

Queries.
?- sibling(ken, X).
X = ron;
no

?- sibling(XY).

irvin

clarence; %sibling is a symmetric relation.
irvin %3 sets of siblings produce 6 answers.
m | dr ed;

cl arence % The dat abase all ows 14 answers.
irvin;

cl arence

m | dr ed;

m | dred

I rvin;

m | dr ed

cl arence % No sem col on here.

XLLIXLIXLIX <KX <KX
1 O 1 I 1 A F A

(7))

ye

COMP780 Semantics Prolog

A relation may be defined with several clauses.
closeRel ative(X Y) :- parent(XY).
closeRel ative(X Y) :- parent(Y,X).
closeRel ative(X Y) :- sibling(XY).

There's an implicit or between the three definitions of the relation
cl oseRel ati ve.

Thisdigunction may be abbreviated using semicolons as
closeRel ative(X, Y) :-
parent (X, Y) ; parent(Y,X) ; sibling(XY).

The three clauses (or single abbreviated clause) are said to define a
“procedure” named cl oseRel ati ve.

The arity of this procedureistwo, i.e, cl oseRel ati ve takes
two arguments.

The identifier cl oseRel ati ve may be used as a different
predicate with other arities.

COMP780 Semantics Prolog

Recursion

Suppose we want to define a predicate “ X is an ancestor of Y,” which
istrueif

parent (X, Y) or
parent (X, Z) andparent(Z,Y) or
parent (X, Z),parent(Z,Z1), andparent (Z1,Y) or
Ya
A recursive definition is required to alow an arbitrary depth for the
definition.
Thefirst case above serves as the basis for the recursive definition.

The remaining cases are handled by an inductive step.

ancestor(X,Y) :- parent(XY).
ancestor(X,Y) :- parent(X 2), ancestor(ZY).

To continue our example, we add some more facts:

par ent (ken, nora) . femal e(nora).
parent (ken, el i zabeth). femral e(elizabeth).

Fig. A.3 shows the parent relation between the twelve people defined
in our database.

chester

T

irvin clarence mildred

TN

ken ron shirley charlie mary

sharon

nora elizabeth

Figure A.3: A Family Tree

10

COMP780 Semantics Prolog

Some queries.
?- ancestor(mldred, mary).
yes % because parent(mldred, mary).

?- ancestor(irvin,nora).
yes % because
% parent(irvin,ken) and
% ancest or (ken, nora) because parent(ken, nora).
?- ancestor(chester, elizabeth).
yes % because
% parent(chester,irvin)
% and ancestor(irvin,elizabeth)
% because parent(irvin, ken) and
% ancestor (ken, el i zabet h)
% because parent (ken, el i zabeth).

?- ancestor(irvin,clarence).

no % because parent(irvin,clarence) is not provable
% and, whoever is substituted for Z, it is
% inpossible to prove parent(irvin,Z) and
% ancestor(Z clarence).

All possibilitiesfor Z aretried that make par ent (i rvi n, 2)

true, namely
Z=r on and
Z=ken,
and both

ancestor(ron, clarence) ad
ancest or (ken, cl arence)

fail.

11

COMP780 Semantics Prolog

Control Aspects

Since efficiency is a concern, Prolog interpreters follow a certain
deterministic strategy for discovering proofs.

1. The order in which the clauses defining a given predicate are
tested (the rule order or clause order) is top to bottom (as they
appear in the text of the program).

Rule order determinesthe order in which answersarefound - e.g.,

ancestor2(X Y) :- parent(X, Z), ancestor2(ZY).
ancestor2(X Y) :- parent(XY).

?- ancestor(irvin,Y).
Y = ron, ken, nora, elizabeth
% Four answers returned separately.
?- ancestor2(irvin,Y).
Y = nora, elizabeth, ron, ken
% Four answers returned separately.

2. The left-to-right order in which terms (subgoals) are listed on the
RHS of arule (the goal order) isthe order in which the interpreter
tries to solve them.

Goa order determines the shape of the search tree that the
interpreter explores.

COMP780 Semantics Prolog

A poor choice of goal order may give a search tree with an infinite
branch down which the interpreter gets trapped - e.g.,

ancestor3(X Y) :- ancestor3(ZY), parent(X 2).
ancestor3(X Y) :- parent(XY).

?- ancestor(irvin,elizabeth).
yes

?- ancestor3(irvin,elizabeth).
This query invokes a new query
ancestor3(Z, elizabeth), parent(irvin,Z2).

which invokes

ancestor 3(Z1, eli zabeth), parent(Z, Z21),
parent (irvin, Z).

which invokes

ancestor 3(Z2, el i zabeth), parent(Z1, Z2),
parent (Z, Z1), parent(irvin,Z2).

which invokes ...

The eventual result is amessage such as
“Out of local stack during execution; execution aborted.”

The problem with thislast definition of the ancestor relation isthe
left recursion with uninstantiated variablesin the first clause.

If possible, the leftmost goal in the body of a clause should be
nonrecursive so that a pattern match occurs and some variables
are instantiated before arecursive cal is made.

13

COMP780 Semantics Prolog

Lists
A list of terms can be represented between brackets- eg., [a, b, c] .
Herethe head of thelistisa, thetail is[b, c] .

Thetall of, eg., [a] is[] (theempty list).

Lists may contain listssaselements- eg.,[a, [b, 1], 3,[c]] isa
list of four elements.

As a specia form of direct pattern matching, [H T] matchesany list
with at least one el ement:
H matches the head of thelist,
T matches the tall.

A list of elements is permitted to the left of the vertical bar - eg.,
[X, &, Y| T] matches any list with at least three elements whose
second element isthe atom a.

X matches the first e ement,

Y matches the third element, and

T matches the rest of the list (possibly empty) after the third
e ement.

Using these pattern matching facilities, values can be specified as the
intersection of constraints instead of by direct assignment.

Listsare ordinary structures with syntactic sugar added.

The notation abbreviates terms constructed with the predefined
“. " function symbol and the special atom |] .
E.g.,
[a, b, c] abbreviates .(a, . (b, . (c,[]))).
[Hl T] abbreviates .(H, T).
[a, b| X] abbreviates.(a, . (b, X)).

14

COMP780 Semantics Prolog

List Processing
1. Definel ast (L, X) to mean“Xisthelast element of thelist L”.
The last lement of asingleton list isits only element.

last ([X], X).

Thelast element of alist with two or more elementsisthelast item
initstall.
last([H T], X :- last(T, X).

?- last([a, b, c], X.

X=c

yes

?- last([], X.
no

The “illegal” operation of requesting the last element of an empty
list smply fails, allowing the caller to try alternative subgoals.

Predicate| ast actsasagenerator when run “backwards’:

?- last(L, a).

L = [a];

L =[] 5 a]; %The underline indicates system
9, a]; %agenerated vari abl es.
L= _5 _9, _13, a]

|—
I

I

o

Variable H in the definition of | ast plays no part in the body of the
rule- it doesn’t need a name.
Prolog has anonymous variables, denoted by an underscore;

last ([| T],X) :- last(T, X).
Another example:
father(F) :- parent(F,), male(F).

The scope of an anonymous variable is its single occurrence.
(The authors prefer using named variables for documentation.)

15

COMP780 Semantics Prolog

2. Definemenber (X, L) tomean “X isamember of thelist L”.

For this predicate we need two clauses,
one as abasis case and

the second to define the recursion that corresponds to an
Inductive specification.

The predicate succeedsif X isthefirst element of L.
menber (X, [X T]).

If the first clause fails, check if X isamember of thetail of L.
menber (X, [HT]) :- nenber(X T).

If the item is not in the list, the recursion eventually tries a query
of theformmenber (X, []) .

This fails since the head of no clause for menber has|[] as
second argument.

3. Definedel et e(X, Li st, NewLi st) tomean

“The variable NewLi st isto bebound to acopy of Li st with
all instances of X removed”.

When X isremoved from an empty list, we get the same empty list.
delete(X, [1,[1).

When an item is removed from alist with that item asits head, we
get the list that results from removing the item from the tail of
thelist (ignoring the head).

delete(H [HT],R :- delete(H T, R.

If the previous clause fails, X is not the head of the list, so we
retain the head of L and take the tail that results from removing
X fromthetail of the original list.

delete(X,[HT],[HR) :- delete(X T, R.

16

COMP780 Semantics Prolog

4. Defineuni on(L1, L2, U tomean

“The variable U isto be bound to the list that contains the
unionof the elementsof L1 and L2".

If thefirst list is empty, the result is the second list.
union([],L2,L2). %clause 1

If the head of L1 isamember of L2, it may beignored sincea
union does not retain duplicate elements.
union([H T],L2,U) :-
menber (H, L2), union(T,L2,U. %clause 2

If the head of L1 isanot member of L2 (clause 2 fails), it must be
included in the result.
union([H T],L2,[HY) :-
union(T,L2,U. %clause 3

In the last two clauses, recursion is used to find the union of the
tall of L1 andthelist L2.

17

COMP780 Semantics Prolog

5. Defineconcat (X, Y, Z) tomean
“The concatenation of listsX and Y isZ”.
In the Prolog literature, this predicate is frequently called append.

concat ([], L, L). % cl ause a

concat([HT], L, [HM) :-
concat (T, L, M. %clause b

?- concat([a,b,c], [d,e], R.
R=1[a,b,c,d,e]
yes

The inference that produced this answer isillustrated by the
search treein Figure A 4.

18

COMP780 Semantics Prolog

When the last query succeeds, the answer is constructed by
unwinding the bindings:

[a| M

[[b | M]] = [ab | M]

[| [c | M]] = [ab,c| M]
[c | [a, b, c,d,e].

Py,

O O —

a
a,
a

2
D,
I

concat([a,b,c],[d,e].R).

[b c]
a|M]

fail concat([b,c],[d,e],M).

H1=b
T1 =[c]
M= [b | M1]

fail concat([c],[d,e],M1).

HZ2 =c
T2 =1]
M1 =[c | M2]

fail concat([],[d,e],M2).

/

succeed with M2 = [d,e]

Figure A.4: A Search Tree for concat

COMP780 Semantics Prolog

Figure A.5 shows the search tree for another application of
concat using semicolonsto generate all the solutions.

concat(X,Y,[a,b,c]).

H=a
M = [b,c]
X=[a|T]
[Y=L
[a,b,c]
success concat(T,L,[b,c]). H1 = b
X = -
Y:L—J]bc]' M1=[C]
Pl T=[b]|T1]
T=[] L=1L1
L =[b,c]
success concat(T1,L1,[c]).
X = [a] H2=c
- . M2 =[]
Y =[b,c];
[o.c] T1=[c| T2

L1=1L2

L1 =[c]
success concat(T2,L2,[]).
X =[ab]
Y =[c];

L2=1_]
sSuccess

X =[a,b,c]
Y=[]

fail

Figure A.5: Another Search Tree for concat

20

COMP780 Semantics Prolog

6. Definer ever se(L, R) tomean “thereverseof listL isR".

reverse([], []).
reverse([HT], L) :- reverse(T, M,
concat(M [H, L).

In executing concat , the depth of recursion corresponds to the
number of times that items from the first list are attached (cons)
to the front of the second list.

So the work done by concat is proportional to the length of
thefirst list.

When r ever se is applied to a list of length n, the concat
calls have first arguments of lengths, n-1, n-2, ..., 2, 1.

So the complexity of r ever se is proportional to n®.

7. An improved reverse using an accumulator:
rev(L, R :- help(L, [], R.

help([1. R R).
help([HT], A R :- help(T, [HA, R.

Predicate hel p iscalled n timesif the original list is of length n.

So the complexity of r ev is proportional to n.

Notethat hel p istail recursive.

21

COMP780 Semantics Prolog

Sorting in Prolog

We need relations for comparing numbers (equal, “=: =", and not
equal, “=\ =, are discussed later):

M<N M=<N M>N M>= N

These require that both operands be numeric atoms or arithmetic
expressions whose variables are bound to numbers.

|nsertion Sort

We sort the tail T of alist (recursively) then insert the head X into its
proper placein thetail.

insertSort([], []).
insertSort([X|T], M :- insertSort(T, L),
insert(X, L, M.

insert(X, [HL], [HM) :- KX insert(X L, M.
insert(X, L, [XL]).

Theclausesfori nsert areorder dependent.

We remove this dependence by distinguishing the case where L is
empty and explicitly stating the conditions for both remaining
Cases.

insert(X, [], [X).

insert(X, [HL], [XXHL]) :- X=<H.
insert(X, [HL], [HM) :- X>H insert(X L, M.

COMP780 Semantics Prolog

Quick Sort

We split the list into those items less than or equal to the pivot and
those greater than the pivot.

We arbitrarily chose the first number in the list as the pivot.

After the two lists are sorted (recursively), they are concatenated with
the pivot in the middle to form an overall sorted list.

Splitting is done by the predicate
partition(P, List, Left, Right)

where
PandLi st areinputs,
Pisapivot for listLi st ,

Left andRi ght areoutputs,
Left getsbound to thelist of al elementsin Li st lessthan
or equal to P, and

Ri ght gets bound to the list of al elementsin Li st greater
than P.

partition(P, [1, [], []).

partition(P, [A X, [AY], 2 :- A=<P,
partition(P, X Y, 2).

partition(P, [A X, Y, [AZ]) :- AP,
partition(P, X Y, 2).

quickSort([1, [1).

qui ckSort ([HT], S :-
partition(H T, Left, R ght),
qui ckSort (Left, NewLeft),
qui ckSort (R ght, NewRi ght),
concat (NewLeft, [H NewRi ght], S).

23

COMP780 Semantics Prolog

TheLogical Variable

A variable in an imperative language is rot the same concept as a
variable in mathematics:

1. A program variable refers to a memory location whose content
may change.

2. A vaiable in mathematics stands for a value that, once
determined, won't change.

E.g., the equations x + 3y =11 and 2x- 3y =4 specify valuefor
xandy (viz.,x=5andy=2).

A variable in Prolog is called a logical variable; it acts like a
mathematical variable,

3. Oncealogical variableisbound to avalue (an instantiation of it),
the binding can be altered only if the pattern matching that caused
the binding is undone by backtracking.

4. The destructive assignment of imperative languages can’t be done
in logic programming.

5. Termsin a query change only by having variables filled in for the
first time.

6. An iterative accumulation of a value is got by having each
instance of a recursive rule take the values passed to it and
compute values for new variables that are then passed to another
call.

7. Since alogica variable is “write-once”, it is more like a constant
identifier with a dynamic defining expresson as in Ada (or
Pelican) than avariable in an imperative language.

24

COMP780 Semantics Prolog

The power of logic programming comes from using the logica
variablein structures to direct the pattern matching.

Results are constructed by binding values to variables according to
the constraints imposed by the structures of the arguments of
the goal term and the head of the clause being matched.

The order that variables are constrained is generally not critical.

The construction of complex values can be postponed as long as
logical variables hold their places in the structure being
constructed.

25

COMP780 Semantics Prolog

Equality and Comparison in Prolog

Unification
T1 = T2 succeedsif term T1 can beunified withterm T2.

| ?- (X b) =1f(g9(a).V).
X = g(a)

Y=0D0

yes

Numerical Comparisons
=: =, =\ = <, > =<, >=

Evaluate both expressions and compare the results.

| ?- 5<8.

yes

| ?- 5 =< 2.

no

| ?- N=:=05.

I Error in arithnetic expression: not a nunber
'(N not instantiated to a nunber)

no

| ?2- N=5 N1 =< 12.

N=5 %The unification N =5 causes a bindi ng
%of Nto 5.

yes

26

COMP780 Semantics Prolog

Forcing Arithmetic Evaluation (is)
Nis Exp

Evauate the arithmetic expression Exp and try to unify the resulting
number with N, avariable or anumber.

| ?- Mis 5+8.
M= 13

yes

| ?- 13 is 5+8.
yes
|
M
N

)

- Mis 9, Nis M1.
9
1

0

yes

| ?- Nis 9, Nis N1

no % Nis N+1 can never succeed.

| ?- 6 is 2*K

I Error in arithnetic expression: not a nunber
I (Knot instantiated to a nunber)

no
Congder the definition of f act or i al :

Thefactorial of Ois1.
fac(0,1).

Thefactorial of N> 0is Ntimesthe factorial of N-1.

fac(N,F) :- N0,
NL is N1,
fac(NL, R,
Fis NR

| ?- fac(5,F).
F = 120
yes

27

COMP780 Semantics Prolog

| dentity
X ==

Succeed if the terms currently instantiated to X and Y are literaly
identical, including variable names.

| ?- X:g(X1 U)1 ::g(x1 U)

yes

| ?- X:g(a, U)’ ::g(v’ b)

no

| ?- X=X %“X\== X" is the negation of “X == X
no

Term Comparison (L exicographic)
T1 @& T2, Tl @ T2, T1 @< T2, T1 @= T2

| ?- ant @ bat.

yes

| ?- @(f(ant),f(bat)). %infix predicates may
yes % al so be entered as prefix

28

COMP780 Semantics Prolog

Term Construction
T =.. L

L is a list whose head is the atom corresponding to the principa
functor of term T and whose tail isthe argument list of that functor
inT.

“=. . ” ispronounced “univ.”

| ?- T =. [@,ant,bat], T. % Sone versions of
T = ant @bat %require call(T)
yes

| ?- T =.. [@&, bat,bat], T.

no

| ?- T =.. [is,N5], T.

N =5,

T=(51s 5)

yes

| ?- menber(X[1,2,3,4) =. L.

L = [menber, X, [1, 2, 3, 4]]
yes

29

COMP780 Semantics Prolog

| nput and Output Predicates
get O(N)

N is bound to the ascii code of the next character from the current
input stream (normally the terminal keyboard).

When the current input stream reaches its end of file, a special
value is bound to N and the stream is closed.

The specia value depends on the Prolog system, but two
possibilities are:
26, the code for control-Z or
-1, aspecia end of file value.

put (N)

The character whose ascii code isthe value of N is printed on the
current output stream (normally the terminal screen).

see(F)

The file whose name is the value of F becomes the current input
stream.

seei ng(F)
F is bound to the name of the current input file.

seen

Close the current input stream.

COMP780 Semantics Prolog

tell (F)

The file whose name is the value of F becomes the current output
stream.

telling(F)

F is bound to the name of the current input file.
told

Close the current output stream.
read(T)

The next Prolog term in the current input stream isbound to T.

The term in the input stream must be followed by a period.
write(T)

The Prolog term bound to T is displayed on the current output
stream.

t ab(N)

N spaces are printed on the output stream.
nl

Newline prints alinefeed character on the current output stream.
abort

Immediately terminate the attempt to satisfy the original query and
return control to the top level.

31

COMP780 Semantics Prolog

nanme(A, L)

Aisalitera atom or anumber, and L isalist of the ascii codes of
the characters comprising the name of A.

| ?- name(A [116, 104, 101]).
A = the

| ?- nane(1994,1L).

L = [49, 57, 57, 52]

call (T)

Assuming T is instantiated to a term that can be interpreted as a
goal,cal | (T) succeedsif and only if T succeeds asaquery.

Some Prolog systemsusesimply T instead of cal | (T) .

32

