
Haskell Crash Course Part I

From the Lambda Calculus to Haskell

00 lambda due on 121170

01 haskell due on 11290

What is Haskell?

A typed, lazy, purely functional programming language

Haskell = λ-calculus ++

• better syntax

• types

• built-in features

◦ booleans, numbers, characters

◦ records (tuples)

◦ lists

◦ recursion

◦ …

Programming in Haskell
Computation by Calculation

Substituting equals by equals

Computation via Substituting Equals by Equals

 (1 + 3) * (4 + 5)

-- subst 1 + 3 = 4

==> 4 * (4 + 5)

-- subst 4 + 5 = 9

==> 4 * 9

-- subst 4 * 9 = 36

==> 36

Computation via Substituting Equals by Equals

11

Equality-Substitution enables Abstraction via Pattern Recognition

Abstraction via Pattern Recognition
Repeated Expressions

31 * (42 + 56)

70 * (12 + 95)

90 * (68 + 12)

Recognize Pattern as λ-function

pat = \x y z -> x * (y + z)

patent
part

00 D

x y fat
xyz x y 2

pit

Equivalent Haskell Definition

pat x y z = x * (y + z)

Function Call is Pattern Instance

pat 31 42 56 =*> 31 * (42 + 56) =*> 31 * 98 =*> 3038

pat 70 12 95 =*> 70 * (12 + 95) =*> 70 * 107 =*> 7490

pat 90 68 12 =*> 90 * (68 + 12) =*> 90 * 80 =*> 7200

Key Idea: Computation is substitute equals by equals.

Programming in Haskell

Substitute Equals by Equals

Thats it! (Do not think of registers, stacks, frames etc.)

Elements of Haskell

GCSE30
I ese 131

HOLY TRINITY

Went

• Core program element is an expression

• Every valid expression has a type (determined at compile-time)

• Every valid expression reduces to a value (computed at run-time)

Ill-typed* expressions are rejected at compile-time before execution

• like in Java

• not like λ-calculus or Python …

weirdo = 1 0 -- rejected by GHC

Why are types good?
• Helps with program design

mm mypg

• Types are contracts (ignore ill-typed inputs!)

• Catches errors early

• Allows compiler to generate code

• Enables compiler optimizations

The Haskell Eco-System
• Batch compiler: ghc Compile and run large programs

• Interactive Shell ghci Shell to interactively run small programs online

(https://repl.it/languages/haskell)

• Build Tool stack Build tool to manage libraries etc.

https://repl.it/languages/haskell
https://repl.it/languages/haskell
https://repl.it/languages/haskell
https://repl.it/languages/haskell
https://repl.it/languages/haskell
https://repl.it/languages/haskell
https://repl.it/languages/haskell

Interactive Shell: ghci
$ stack ghci

:load file.hs

:type expression

:info variable

A Haskell Source File
A sequence of top-level definitions x1 , x2 , …

• Each has type type_1 , type_2 , …

• Each defined by expression expr_1 , expr_2 , …

x_1 :: type_1

x_1 = expr_1

x_2 :: type_2

x_2 = expr_2

.

.

.

8

Basic Types

ex1 :: Int

ex1 = 31 * (42 + 56) -- this is a comment

ex2 :: Double

ex2 = 3 * (4.2 + 5.6) -- arithmetic operators "overloaded"

ex3 :: Char

ex3 = 'a' -- 'a', 'b', 'c', etc. built-in `Char` values

ex4 :: Bool

ex4 = True -- True, False are builtin Bool values

ex5 :: Bool

ex5 = False

QUIZ: Basic Operations
ex6 :: Int

ex6 = 4 + 5

ex7 :: Int

ex7 = 4 * 5

ex8 :: Bool

ex8 = 5 > 4

quiz :: ???

quiz = if ex8 then ex6 else ex7

What is the type of quiz ?

A. Int

B. Bool

C. Error!

ENV t ez

o t imiest

QUIZ: Basic Operations
ex6 :: Int

ex6 = 4 + 5

ex7 :: Int

ex7 = 4 * 5

ex8 :: Bool

ex8 = 5 > 4

quiz :: ???

quiz = if ex8 then ex6 else ex7

a

P TRUE

TRUE
D

What is the value of quiz ?

A. 9

B. 20

C. Other!

Function Types
In Haskell, a function is a value that has a type

A -> B

A function that

lx e
In Out

o

• takes input of type A

• returns output of type B

For example

isPos :: Int -> Bool

isPos = \n -> (x > 0)

Define function-expressions using \ like in λ-calculus!

But Haskell also allows us to put the parameter on the left

isPos :: Int -> Bool

isPos n = (x > 0)

(Meaning is identical to above definition with \n -> ...)

t

isPos 12

Multiple Argument Functions
A function that

• takes three inputs A1 , A2 and A3

• returns one output B has the type

A1 -> A2 -> A3 -> B

For example

pat :: Int -> Int -> Int -> Int

pat = \x y z -> x * (y + z)

which we can write with the params on the left as

pat :: Int -> Int -> Int -> Int

pat x y z = x * (y + z)

QUIZ
What is the type of quiz ?

quiz :: ???

quiz x y = (x + y) > 0

A. Int -> Int

B. Int -> Bool

C. Int -> Int -> Int

D. Int -> Int -> Bool

E. (Int, Int) -> Bool

Bool

quiz lx ly
ÉÉpI

In't int i'tint

y

Int 2 Int Bool

Function Calls
A function call is exactly like in the λ-calculus

e1 e2

where e1 is a function and e2 is the argument. For example

>>> isPos 12

True

>>> isPos (0 - 5)

False

fEang

Multiple Argument Calls
With multiple arguments, just pass them in one by one, e.g.

(((e e1) e2) e3)

For example

>>> pat 31 42 56

3038

EXERCISE
Write a function myMax that returns the maximum of two inputs

myMax :: Int -> Int -> Int

myMax = ???

When you are done you should see the following behavior:

>>> myMax 10 20

20

>>> myMax 100 5

100

EXERCISE
Write a function sumTo such that sumTo n evaluates to 0 + 1 + 2 + ... + n

sumTo :: Int -> Int

sumTo n = ???

When you are done you should see the following behavior:

>>> sumTo 3

6

>>> sumTo 4

10

>>> sumTo 5

15

O It 2t th

OH 2 3 6

Ot it 2 3 4 10

OH 2 3 4 5 15

How to Return Multiple Outputs?

Tuples
A type for packing n di!erent kinds of values into a single “struct”

(T1,..., Tn)

For example

Est Pair apple banana

apple

SND C
banana

EEIIII.EE i
i

tup1 :: ???

tup1 = ('a', 5)

tup2 :: (Char, Double, Int)

tup2 = ('a', 5.2, 7)

QUIZ
What is the type ??? of tup3 ?

tup3 :: ???

tup3 = ((7, 5.2), True)

A. (Int, Bool)

Cut.me
D C Boot

B. (Int, Double, Bool)

C. (Int, (Double, Bool))

D. ((Int, Double), Bool)

E. (Tuple, Bool)

Extracting Values from Tuples
We can create a tuple of three values e1 , e2 , and e3 …

tup = (e1, e2, e3)

… but how to extract the values from this tuple?

2

Pattern Matching via case-of expressions

fst3 :: (t1, t2, t3) -> t1

fst3 t = case t of

 (x1, x2, x3) -> x1

snd3 :: (t1, t2, t3) -> t2

snd3 t = case t of

 (x1, x2, x3) -> x2

thd3 :: (t1, t2, t3) -> t3

thd3 t = case t of

 (x1, x2, x3) -> x3

QUIZ
What is the value of quiz defined as

tup2 :: (Char, Double, Int)

tup2 = ('a', 5.2, 7)

snd3 :: (t1, t2, t3) -> t2

snd3 t = case t of

 (x1, x2, x3) -> x2

quiz = snd3 tup2

A. 'a'

B. 5.2

C. 7

D. ('a', 5.2)

E. (5.2, 7)

Lists
Unbounded Sequence of values of type T

[T]

For example

chars :: [Char]

chars = ['a', 'b', 'c']

ints :: [Int]

ints = [1, 3, 5, 7]

pairs :: [(Int, Bool)]

pairs = [(1,True), (2,False)]

D

eniiieiiii.esiit

QUIZ
What is the type of things defined as

things :: ???

things = [[1], [2, 3], [4, 5, 6]]

A. [Int]

B. ([Int], [Int], [Int])

C. [(Int, Int, Int)]

D. [[Int]]

E. List

if
He

int

List’s Values Must Have The SAME Type!
The type [T] denotes an unbounded sequence of values of type T

Suppose you have a list

oops = [1, 2, 'c']

There is no T that we can use

• As last element is not Int

• First two elements are not Char !

Result: Mysterious Type Error!

Constructing Lists
There are two ways to construct lists

 [] -- creates an empty list

 h:t -- creates a list with "head" 'h' and "tail" t

For example

Nil
Cons

>>> 3 : []

[3]

>>> 2 : (3 : [])

[2, 3]

>>> 1 : (2 : (3 : []))

[1, 2, 3]

Cons Operator : is Right Associative

x1 : x2 : x3 : x4 : t means x1 : (x2 : (x3 : (x4 : t)))

So we can just avoid the parentheses.

Syntactic Sugar

Haskell lets you write [x1, x2, x3, x4] instead of x1 : x2 : x3 : x4 : []

Functions Producing Lists
Lets write a function copy3 that

• takes an input x and

• returns a list with three copies of x

copy3 :: ???

copy3 x = ???

When you are done, you should see the following

>>> copy3 5

[5, 5, 5]

>>> copy3 "cat"

["cat", "cat", "cat"]

Lets write some Functions
A Recipe (https://www.htdp.org/)

Step 1: Write some tests

Step 2: Write the type

Step 3: Write the code

https://www.htdp.org/
https://www.htdp.org/
https://www.htdp.org/
https://www.htdp.org/
https://www.htdp.org/
https://www.htdp.org/

PRACTICE: Clone
Write a function clone such that clone n x returns a list with n copies of x .

1. Tests

When you are done you should see the following behavior

>>> clone 0 "cat"

[]

>>> clone 1 "cat"

["cat"]

>>> clone 2 "cat"

["cat", "cat"]

>>> clone 3 "cat"

["cat", "cat", "cat"]

>>> clone 3 100

[100, 100, 100]

2. Types

clone :: ???

3. Code

clone n x = ???

L

t

How does clone execute?
(Substituting equals-by-equals!)

clone 3 100

=*> ???

EXERCISE: Range
Write a function range such that range i j returns the list of values [i, i+1,

..., j]

range :: ???

range i j = ???

1. Tests

if
lo

p
hi

>>> range 4 3

[]

>>> range 3 3

[3]

>>> range 2 3

[2, 3]

>>> range 1 3

[1, 2, 3]

>>> range 0 3

[0, 1, 2, 3]

2. Type

range :: ???

3. Code

range = ???

Functions Consuming Lists
So far: how to produce lists.

Next how to consume lists!

EXERCISE
Lets write a function firstElem such that firstElem xs returns the first element

xs if it is a non-empty list, and 0 otherwise.

HINT: How to extract values from a list?

1. Tests

When you are done you should see the following behavior:

>>> firstElem []

0

>>> firstElem [10, 20, 30]

10

>>> firstElem [5, 6, 7, 8]

5

2. Type

firstElem :: ???

3. Code

firstElem = ???

QUIZ
Suppose we have the following mystery function

mystery :: [a] -> Int

mystery l = case l of

 [] -> 0

 (x:xs) -> 1 + mystery xs

What does mystery [10, 20, 30] evaluate to?

A. 10

B. 20

C. 30

D. 3

E. 0

EXERCISE: Summing a List
Write a function sumList such that sumList [x1, ..., xn] returns x1 + ... +

xn

1. Tests

When you are done you should get the following behavior:

>>> sumList []

0

>>> sumlist [3]

3

>>> sumlist [2, 3]

5

>>> sumlist [1, 2, 3]

6

2. Type

sumList :: [Int] -> Int

3. Code

sumList = ???

Functions on lists: take
Let’s write a function to take first n elements of a list xs .

1. Tests

-- >>> ???

2. Type

take :: ???## Some useful library functions

```haskell

-- | Length of the list

length :: [t] -> Int

-- | Append two lists

(++) :: [t] -> [t] -> [t]

-- | Are two lists equal?

(==) :: [t] -> [t] -> Bool

You can search for library functions on Hoogle (https://www.haskell.org/hoogle/)!

https://www.haskell.org/hoogle/
https://www.haskell.org/hoogle/
https://www.haskell.org/hoogle/
https://www.haskell.org/hoogle/
https://www.haskell.org/hoogle/
https://www.haskell.org/hoogle/


**3. Code**

```haskell

take = ???

Some useful library functions
-- | Length of the list

length :: [t] -> Int

-- | Append two lists

(++) :: [t] -> [t] -> [t]

-- | Are two lists equal?

(==) :: [t] -> [t] -> Bool

You can search for library functions on Hoogle (https://www.haskell.org/hoogle/)!

Recap

• Core program element is an expression

• Every valid expression has a type (determined at compile-time)

• Every valid expression reduces to a value (computed at run-time)

https://www.haskell.org/hoogle/
https://www.haskell.org/hoogle/
https://www.haskell.org/hoogle/
https://www.haskell.org/hoogle/
https://www.haskell.org/hoogle/
https://www.haskell.org/hoogle/

Execution

• Basic values & operators

• Execution / Function Calls just substitute equals by equals

• Pack data into tuples & lists

• Unpack data via pattern-matching

(https://ucsd-cse130.github.io/wi22/feed.xml) (https://twitter.com/ranjitjhala)

(https://plus.google.com/u/0/104385825850161331469)

(https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher

(http://lucumr.pocoo.org), suggest improvements here (https://github.com/ucsd-

progsys/liquidhaskell-blog/).

https://ucsd-cse130.github.io/wi22/feed.xml
https://ucsd-cse130.github.io/wi22/feed.xml
https://ucsd-cse130.github.io/wi22/feed.xml
https://ucsd-cse130.github.io/wi22/feed.xml
https://ucsd-cse130.github.io/wi22/feed.xml
https://twitter.com/ranjitjhala
https://twitter.com/ranjitjhala
https://twitter.com/ranjitjhala
https://twitter.com/ranjitjhala
https://twitter.com/ranjitjhala
https://plus.google.com/u/0/104385825850161331469
https://plus.google.com/u/0/104385825850161331469
https://plus.google.com/u/0/104385825850161331469
https://plus.google.com/u/0/104385825850161331469
https://plus.google.com/u/0/104385825850161331469
https://github.com/ranjitjhala
https://github.com/ranjitjhala
https://github.com/ranjitjhala
https://github.com/ranjitjhala
https://github.com/ranjitjhala
http://jaspervdj.be/hakyll
http://jaspervdj.be/hakyll
http://jaspervdj.be/hakyll
http://jaspervdj.be/hakyll
http://jaspervdj.be/hakyll
http://jaspervdj.be/hakyll
http://lucumr.pocoo.org/
http://lucumr.pocoo.org/
http://lucumr.pocoo.org/
http://lucumr.pocoo.org/
http://lucumr.pocoo.org/
http://lucumr.pocoo.org/
http://lucumr.pocoo.org/
https://github.com/ucsd-progsys/liquidhaskell-blog/
https://github.com/ucsd-progsys/liquidhaskell-blog/
https://github.com/ucsd-progsys/liquidhaskell-blog/
https://github.com/ucsd-progsys/liquidhaskell-blog/
https://github.com/ucsd-progsys/liquidhaskell-blog/
https://github.com/ucsd-progsys/liquidhaskell-blog/
https://github.com/ucsd-progsys/liquidhaskell-blog/
https://github.com/ucsd-progsys/liquidhaskell-blog/
https://github.com/ucsd-progsys/liquidhaskell-blog/

