
CSE 130 Midterm, Spring 2018

Nadia Polikarpova

May 4, 2018

NAME ____________________________________

SID ____________________________________

• You have 50 minutes to complete this exam.

• Where limits are given, write no more than the amount specified.

• You may refer to a double-sided cheat sheet, but no electronic ma-
terials.

• Questions marked with * are difficult; we recommend solving them
last.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Do not communicate with anyone but an exam proctor.

• If you have a question, raise your hand.

• Good luck!

1



Part I. Lambda Calculus [60 pts]

Q1: Reductions [20 pts]

For each λ-term below, circle all valid reductions of that term. It is possible
that none, some, or all of the listed reductions are valid. Reminder:

• =a> stands for an α-step (α-renaming)
• =b> stands for a β-step (β-reduction)
• =*> stands for a sequence of zero or more steps, where each step is

either an α-step or a β-step

1.1 [5 pts]

(\x -> x (\x -> x)) (f x)

(A) =b> f x (\x -> x)

(B) =b> f x (\x -> f x)

(C) =b> f x (\f x -> f x)

(D) =a> (\y -> y (\x -> x)) (f y)

(E) =a> (\x -> x (\y -> y)) (f x)

1.2 [5 pts]

\x -> (\y z -> x y) (\x -> x)

(A) =a> \x -> (\y x -> x x) (\x -> x)

(B) =a> \a -> (\y z -> a y) (\x -> a)

(C) =*> \a -> (\y z -> a y) (\a -> a)

(D) =b> \x z -> x (\x -> x)

(E) =b> \y z -> (\x -> x) y

2



1.3 [5 pts]

(\f g x -> f (g x)) (\x -> g x) (\z -> z)

(A) =b> (\f g x -> f (g x)) (g (\z -> z))

(B) =b> (\g x -> (\x -> g x) (g x)) (\z -> z)

(C) =*> \x -> g x

(D) =*> \y -> g y

(E) =*> \x -> f x

1.4 [5 pts]

(\x y -> \b u v -> b v u) (\x y -> y) (\x y -> y) (\x y -> x)

(A) =b> (\y -> \b u v -> b v u) (\x y -> y) (\x y -> x)

(B) =b> (\y -> \b u v -> b v u) (\x y -> y) (\x y -> y)

(C) =*> (\b u v -> b v u) (\x y -> x)

(D) =*> \x y -> y

(E) =b> \y -> (\x y -> y) (\x y -> y) (\x y -> x)

Q2: Lists [40 pts]

We can encode lists in λ-calculus by representing

• an empty list as FALSE
• a non-empty list as a PAIR of its head and tail

For example, the list [1,2,3] would be represented as:

PAIR ONE (PAIR TWO (PAIR THREE FALSE))

You can find the definitions of all variables used in this question in the
“Lambda Calculus Cheat Sheet” at the end of this exam.

3



2.1 Repeat [10 pts]

Implement the function REPEAT, which, given a Church numeral n and any
value x, returns a list with n copies of x. You can use any function defined
in the “Lambda Calculus Cheat Sheet”.

let REPEAT = ___________________________________________________

The function should satisfy the following test cases:

eval repeat1 :
REPEAT ZERO x
=~> FALSE

eval repeat2 :
REPEAT TWO ONE
=~> PAIR ONE (PAIR ONE FALSE)

2.2 Empty* [20 pts]

Implement the function EMPTY, which, given a list represented as defined
above, determines whether the list is empty. You can use any function defined
in the “Lambda Calculus Cheat Sheet”.

let EMPTY = ___________________________________________________

The function should satisfy the following test cases:

eval empty1 :
EMPTY FALSE
=~> TRUE

eval repeat2 :
EMPTY (PAIR ZERO FALSE)
=~> FALSE

4



2.3 Length [10 pts]

Recall that recursion can be implemented in λ-calculus using fixpoint combi-
nators like this one:

let FIX = \stp -> (\x -> stp (x x)) (\x -> stp (x x))

Using the fixpoint combinator, implement the function LEN, which, given
a list represented as defined above, computes its length. You can use FIX,
EMPTY from 2.2, and any function defined in the “Lambda Calculus Cheat
Sheet”.

let LEN = ________________________________________________________

The function should satisfy the following test cases:

eval len1 :
LEN FALSE
=~> ZERO

eval repeat2 :
LEN (PAIR ONE (PAIR TWO FALSE))
=~> TWO

5



Part II. Datatypes and Recursion [50 pts]

Q3: Binary Search Trees [50 pts]

Recall that a binary search tree (BST) is a binary tree, where every node
stores an integer key x, and the keys are ordered such that all keys in the
node’s left sub-tree are strictly less than x, and all keys in the node’s right
sub-tree are strictly greater than x. An example BST is depicted below.

Figure 1: Binary Search Tree

In this question, you will implement several Haskell functions that operate
on BSTs. We will represent BSTs using the following datatype:

data Tree = Empty | Node Int Tree Tree

In your implementations, you can use any library functions on integers (arith-
metic operators and comparisons), and the append function on lists (++).

3.1 Size [5 pts]

Implement the fuction size that computes the size of a tree.

size :: Tree -> Int

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

Your implementation must satisfy the following test cases

6



size Empty
==> 0

size (Node 8 (Node 3 Empty Empty) (Node 10 Empty Empty))
==> 3

3.2 Insert [10 pts]

Implement the fuction insert that inserts a key into a BST. More precisely,
insert x t may assume that t is a BST (i.e., elements are ordered as defined
above) and must ensure that its result is a BST that contains a key x.

insert :: Int -> Tree -> Tree

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

Your implementation must satisfy the following test cases

insert 8 Empty
==> Node 8 Empty Empty

insert 6 (Node 8 (Node 3 Empty Empty) (Node 10 Empty Empty))
==> Node 8

(Node 3 Empty (Node 6 Empty Empty))
(Node 10 Empty Empty)

7



3.3 Sort [15 pts]

Implement the helper fuctions fromList and toList so that the sort func-
tion below sorts a list of integers (you can assume the input list has no
duplcate elements). You implementation can use the function insert from
question 3.2.

sort :: [Int] -> [Int]
sort xs = toList (fromList xs)

where
fromList :: [Int] -> Tree

________________________________________________________

________________________________________________________

________________________________________________________

toList :: Tree -> [Int]

________________________________________________________

________________________________________________________

________________________________________________________

3.4 Tail-recursive size* [20 pts]

Re-implement the function size from question 3.1 so that it’s tail-recursive.

Hint: introduce an auxiliary function with extra arguments that keep track
of what’s already done and what is still left to do.

8



size :: Tree -> Int

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

_______________________________________________________________

9



Lambda Calculus Cheat Sheet

Here is a list of definitions you may find useful for Q2

-- Booleans --------------------------------

let TRUE = \x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y
let NOT = \b x y -> b y x
let AND = \b1 b2 -> ITE b1 b2 FALSE
let OR = \b1 b2 -> ITE b1 TRUE b2

-- Pairs -----------------------------------

let PAIR = \x y b -> b x y
let FST = \p -> p TRUE
let SND = \p -> p FALSE

-- Numbers ---------------------------------

let ZERO = \f x -> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))

-- Arithmetic ------------------------------

let INC = \n f x -> f (n f x)
let ADD = \n m -> n INC m
let MUL = \n m -> n (ADD m) ZERO
let ISZ = \n -> n (\z -> FALSE) TRUE

10


	Part I. Lambda Calculus [60 pts]
	Q1: Reductions [20 pts]
	1.1 [5 pts]
	1.2 [5 pts]
	1.3 [5 pts]
	1.4 [5 pts]

	Q2: Lists [40 pts]
	2.1 Repeat [10 pts]
	2.2 Empty* [20 pts]
	2.3 Length [10 pts]


	Part II. Datatypes and Recursion [50 pts]
	Q3: Binary Search Trees [50 pts]
	3.1 Size [5 pts]
	3.2 Insert [10 pts]
	3.3 Sort [15 pts]
	3.4 Tail-recursive size* [20 pts]


	Lambda Calculus Cheat Sheet

