Name:

ID :

CSE 130, Winter 2011: Final Examination

March 15, 2011

Do not start the exam until you are told to.

This is a open-book, open-notes exam, but with
no computational devices allowed (such as calcula-
tors/cellphones/laptops).

Do not look at anyone else’s exam. Do not talk to
anyone but an exam proctor during the exam.

Write your answers in the space provided.

Wherever it gives a line limit for your answer, write
no more than the specified number of lines explana-
tion and code. The rest will be ignored.

Work out your solution in blank space or scratch pa-
per, and only put your answer in the answer blank
given.

The points for each problem are a rough indicator of
the difficulty of the problem.

Good luck!

TOTAL

40 Points

35 Points

10 Points

25 Points

30 Points

140 Points

1. [40 points | A dictionary is a data structure that maps (string) keys to values. We will represent dictionaries
using a polymorphic Ocaml datatype:

type ’a dict = Empty | Node of string * ’a * ’a dict * ’a dict

That is, a dictionary is represented as a tree, which is either empty, or a node that has:

1. a binding from a string key to an ’a value,
2. a left sub-dictionary, and,

3. a right sub-dictionary.

For example, the dictionary:

apple : 2.25
banana: 1.50
cherry: 2.75
grape : 2.65
kiwi 3.99
orange: 0.75
peach : 1.99

that represents the prices (per pound) of various fruits, is represented by the tree:

2.25 2.75 3.99 1.99

which is encoded by the Ocaml value (of type float dict) bound to fruitd:

let fruitd =
Node ("grape", 2.65,

Node ("banana", 1.50,
Node ("apple", 2.25, Empty, Empty),
Node ("cherry", 2.75, Empty, Empty)),

Node ("orange", 0.75,
Node ("kiwi", 3.99, Empty, Empty),
Node ("peach", 1.99, Empty, Empty)))

Notice that the tree is Binary-Search-Ordered meaning that for each node with a key k, the keys in the

e left subtree are (in alphabetical order) less than k,

e right subtree are (in alphabetical order) greater than k.

a. [10 points] Fill in the blanks below, to obtain an implementation of a function:
val find: ’a dict -> string -> ’a
such that:
find d k
returns the value associated with the key k in the dictionary d. Thus,
find fruitd "cherry"
should return 2.75.

let rec find d k =
match d with
| Empty ->
raise Not_found
| Node (k’, v’, 1, r) —>

if k = k’ then ___ _ _ else
if k < k’ then ________ ___ _ _ __ _ o ____ else
(x k > K> *)

b. [10 points] Fill in the blanks below, to obtain an implementation of a function:
val add: ’a dict -> string -> ’a -> ’a dict

such that

add d k v
returns a new dictionary corresponding to adding the key-value pair (k,v) to the dictionary d. Thus, the
expression:

let dO = fruitd in

let d1 = add dO "banana" 5.0 in

let d2 = add di1 "mango" 10.25 in

(find d2 "banana", find d2 "mango", find d2 "cherry")

should evaluate to: (5.0, 10.25, 2.75).

let rec add d k v =
match d with
| Empty ->

if k = k> then ________ ____ _ _ _ _ o _____ else
if kx < k’ then ___________ ____ _ _ o _____ else
(x k > Kk’ *)

c. [20 points | Finally, fill in the blanks below, to obtain an implementation of a function:
val fold: (string -> ’a -> ’b -> ’b) -> ’b -> ’a dict -> ’b
such that
fold £ b d
returns the result of “folding” the function f over the tree d, starting with the “base” value of b (analogous
to how List.fold_left f b xs “folds” the function f over a list xs starting with the base value b).
Your implementation should perform an In-Order traversal over the tree. That is, it should use the base
value to recursively fold over the left subtree, then apply the result to the node’s key-value binding, and
then use the result to recursively fold over the right subtree. Thus, the expression:
fold (fun k v b -=> b™",""k) [] fruitd
should concatenate the names of fruits in fruitd and return
",apple,banana,cherry,grape,kiwi,orange,peach",
and the expression:
fold (fun k v b => b + v) 0 fruitd
should sum up the prices in the dictionary fruitd and return 15.88.

let rec fold £f b d =
match d with
| Empty ->

2.

[35 points] In this problem, we will represent Python-style namespaces using Ocaml data structures.
Consider the following datatype declaration:

type name_space

and value

EmptyNameSpace
| Info of (string * value) list * name_space

Int of int
| Method of (name_space -> int -> int)

A name space is either the empty name space, or it contains some information. The information it contains is
a list of string-to-value bindings, along with a pointer to the parent name space. A value is either an int, or it
is a method. A method takes a name space as the first parameter (the self pointer), and an additional integer,
and returns an integer.

Suppose we had the following Python code:

class SimpleObji:

a=20
def f(self, i): return i+1

class SimpleObj2 (SimpleObjl):

def g(self, i): return i+2

SimpleObj2()

The object created by the call to SimpleObj2() would be represented in our OCaml data structures as follows:

let
let

let
let

a.

method_f self i = i+l
SimpleObjl = Info([("a", Int(0)); ("f", Method(method_f))], EmptyNameSpace)

method_g self i = i+2
Simple0bj2 = Info([("g", Method(method_g))], SimpleObjl)

[15 points | Write an OCaml function lookup: name_space -> string -> value that takes a
name space and a name, and searches the name space (and parent names spaces) for the given
name. If a value is found, then the value should be returned. If no value is found, you should
raise NotFound. For example, if you run lookup SimpleObj2 "a" you should get Int(0) back, and
if you run lookup SimpleObj2 "midori" you will get an exception NotFound.

Write your lookup function below:

b. [10 points | We will now see how to use the lookup function. First, consider the following simple
conversion functions:

exception TypeError
let to_int value =

match value with

| Int(i) -> i

| _ -> raise TypeError
let to_method value =

match value with

| Method(m) -> m

| _ -> raise TypeError

And consider the following Python code:

class Simple0Obj3:
a = 10;
def f(self, i): return self.a + i

0BJ3 = SimpleObj3()

Fill in the OCaml code below so that the object created by Simple0bj3() above is represented in OCaml
in the OBJ3 variable below (recall that self is a namespace!):

let method_f self i = (to_int (lookup

let OBJ3 = Info([("a", Int(10)); ("f", Method(method_f))], EmptyNameSpace)

c. [10 points | Finally, we will write an OCaml function that performs dynamic dispatch. In particular,
fill in the code below for the function invoke_method: name_space -> string -> int -> int, which
takes as parameters a name space (in other words an object), a method name, an integer, and returns the
result of applying that method name to the given object with the integer parameter:

let invoke_method self name i =

(to_method (lookup _________________________))

Now fill in the parameters to the invoke_method function below so that it performs the Python dispatch
0BJ3.£(3):

invoke_method

3. [10 points]

Write a decorator print_first_k_args that takes a parameter k, and decorates a function by printing, for
each call to the function, the first k arguments (or all arguments if the function takes less than k arguments),
aswell as the return value. For example:

def print_first_k_args(k):

@print_first_k_args(1l)
def sum(a,b): return a + b

>>> sum(3,4)
Arg 1: 3
Return: 7

7

O@print_first_k_args(2)
def sum(a,b): return a + b

>>> sum(3,4)

Arg 1: 3
Arg 2: 4
Return: 7
7

@print_first_k_args(3)
def sum(a,b): return a + b

>>> sum(3,4)

Arg 1: 3
Arg 2: 4
Return: 7
7

@print_first_k_args(1l)

def fac(n):
if n <= 0: return 1
else: return nxfac(n-1)

>>> fac(3)
Arg 1: 3
Arg 1: 2
Arg 1: 1
Arg 1: 0O
Return:
Return:
Return:
Return:
6

>>>

(o) I NS I S

Write the print_first_k_args decroator below (hint: str(x) returns the string representation of x)

4.

[25 points | In this problem we will write several Python functions to do basic manipulations of images.
Images will be represented as lists of lists of integers between 0 and 255. For example, the following would be
a simple image of a smiley face.

img1=[[255,255, 0, 0,255,255],
[255,255, O, 0,255,255],
[o, 0,285, 0O, O, O],
[0, 0,255,255, 0, O],
[255, 0, O, O, 0,255],
[0,255,255,255,255, 0]1]

We can refer to each pixel of the image by its horizontal (x) and vertical (y) coordinate. The top left corner is
(0,0) and coordinates increase to the right and down. We can access coordinate (x,y) of an image img by doing
img[y] [x].

Your job will be to write several functions to create and manipulate such images. Except where specified
otherwise, you may assume that the input to all functions is valid and well formed.

Hint: (for several parts) Accessing an index in a list beyond the bounds of the list raises an IndexError. It
may be easier to just catch the exception than to check the bounds yourself.

a. [5 points | Fill in the body for the function create_image such that it returns a new image with width
w, height h, and every pixel colored c. The rows of the image should not be aliased.
For example, create_image(3,2,27) should return [[27, 27, 271, [27, 27, 27]].
Hint: This can be done elegantly in one line.

def create_image(w,h,c):

b. [5 points] Fill in the body for the function well formed. This function should return True if the image
passed in satisfies the following 2 criteria: All rows are the same length, and all color values are between
0 and 255 (both inclusive). If either or both fail to hold, the function should return False.

def well_formed(img):

c. [5 points | Fill in the body of the function £i11_rect. This function should set all pixels with coordinates
(%,y), where x0 < x < x1 and y0 < y < y1, to color c. The coordinates (x0,y0) and (x1,y1) may lie
outside the bounds of the image. Your £ill_rect function should still set all of the pixels of the rectangle
that do lie within the image to the color specified.

def fill_rect(img,x0,y0,x1,yl,c):

d. [10 points] Fill in the blanks below to get a function £ill_region which behaves as follows. This func-
tion should start at (x,y), and find all contiguous pixels in img which can be reached from (x,y) by only mov-
ing horizontally or vertically one pixel at a time, which have the color oldcolor. For each such pixel, the
function should change the pixel’s color to newcolor. For example, running £ill region(img,0,10,1,2)
on the image img which has the value shown on the left should result in changing img to the value shown
on the right.

#before tafter
img = [[0, 3, 0, 3, 0], img = [[10, 3, 0, 3,10],
(Lo, 3,0, 3, 0], (10, 3, 0, 3,101,
(Lo, 0, 3, 0, 0], (10,10, 3,10,10],
[5, 0, 0, 0, 5], [5,10,10,10, 51,
[0, 5, 5,5, 0]] [0, 5,5, 5, 0]
Assume: Whenever fill_region is called, oldcolor != newcolor and imgl[y] [x] == oldcolor.

def fill_region(img, oldcolor, newcolor, x, y , cC):
for (x1, y1) in [______________ e e >]:
try:
except:

pass

10

5. [30 points] In this problem, you will write a SAT solver using Prolog. In particular, given a boolean formula,
you will write Prolog code to find all possible ways of making the formula true. We encode boolean formulas
in Prolog as follows:

kind of boolean formula boolean formula Prolog term
falsehood false 0

truthness true 1

Variable A var (A)

Negated Variable —-A not (var(4))
Conjunction FINF2AN...NFn | and([F1, F2, ..., Fnl)
Disjunction F1vF2v...VFn | or([F1, F2, ..., Fnl)

We assume that negation always appears right next to a variable (one can always push the negation to the
inside through conjunctions and disjunctions to reach this form).

Here are some example formulas and the corresponding Prolog term:

boolean formula Prolog term
ANBAC and([var (A) ,var(B),var(C)]1)
(AVB)A(mAVC) | and([or([var(A),var(B)]), or([not(var(4)),var(C)]) 1)

We encode a boolean variable being true or false by setting its value to 1 or 0, respectively.

Your first task will be to write a sat predicate that takes a formula as a parameter, and is true if the formula
evaluates to true. Once you write this predicate, you should get the following behavior:

?- sat(or([and([var(A),var(B)]), and([not(var(A)), not(var(B))1)1)).

A=1,
B=1;
A =0,
B=20;
No

?7- sat(or([var(4A), not(var(a))])).

A=1;
A=20;
No

?7- sat(or([var(A),var(B)])).

A=1;
B=1;
No

Note that, as shown in the last example above (AV B), your code for now does not need to generate all possible
truth assignments that make the predicate true. We will worry about that later.

11

a. [15 points]| Fill in the code below for the sat predicate:

sat(var(X)) :- X = 1.
sat(not(var(X))) :- X = 0.

sat(and([1)).

%% Fill in the other case(s) for ‘‘and’’ here:

sat(and([X | Taill)) :-

sat(or([])) :- fail.

%% Fill in the other case(s) for ‘‘or’’ here:

sat(or([X | Taill)) :-

sat(or([_ | Taill)) :-

b. [10 points | Next, you will write a bools predicate that takes a list of Prolog variables, and iterates
through all possible ways of assigning 0 and 1 to these variables. After you write this predicate, you should
get the following behavior:

?- bools([A,B]).

A =0,
B=20;
A =0,
B=1;
A=1,
B = ;
A=1,
B=1;
No

Fill in the bools predicate below:

bool(X) :- X = 0.
bool(X) :- X =
bools([1).

bools([X | Taill]) :-

|
—

12

c. [5 points] Finally, you will put this all together in a predicate called allsat. This predicate takes a
list of variables and a formula, and generates all truth assignments that make the formula true.

?- allsat([A,B], or([var(A),var(B)]1)).

A =0,
B=1;
A=1,
B=20;
A=1,
B=1;
A=1,
B=1;
No

Note that, as shown in the above example, it is perfectly fine if the output of your code repeats some
truth assignments. Write the allsat predicate below:

13

