cse130 Calendar Contact Grades Lectures Assignments Links Piazza Canvas

- 4 —

Ty il Lam‘Zda Cai

Your Favorite Language
Probably has lots of features:

e Assignment(x = x + 1)

e Booleans, integers, characters, strings, ...
e Conditionals

e Loops

e return, break, continue

e Functions

e Recursion

e References / pointers

e Objects and classes

e Inheritance

e ..
Which ones can we do without?

What is the smallest universal language?

What is computable?

Before 1930s

Informal notion of an effectively calculable function:

172
32)5512
32
231
224
72
&4
b

can be computed by a human with pen and paper, following an algorithm

1936: Formalization
What is the smallest universal language?

Alan Turing

Alan Turing

Alonzo Church

The Next 700 Languages

Peter Landin

Whatever the next 700 languages turn out to be, they will surely be variants of
lambda calculus.

Peter Landin, 1966

The Lambda Calculus

Has one feature:

e Functions

No, really

o Assigament{x—=—x—+1)

A)))) o

o Gonditionals

e Loops

o return ;- break - centinve
e Functions

e Reeursien

o References{pointers

o Objeetsand-elasses

o Inheritanee

o Refleetion

More precisely, only thing you can do is:

e Define a function
e Call a function

Describing a Programming Language

o Syntax: what do programs look like?
o Semantics: what do programs mean?

o Operational semantics: how do programs execute step-by-step?

Syntax: What Programs Look Like

e 1:= X -- variable 'x'
| (\x -> e) -- function that takes a parameter 'x' and returns 'e'
| (e1 e2) -- call (function) 'el' with argument 'e2'

Programs are expressions e (also called A-terms) of one of three kinds:

e Variable
° X) y) z
e Abstraction (aka nameless function definition)

o (\x ->e)
o x isthe formal parameter, e is the body

o “forany x compute e”
e Application (aka function call)

o (el e2)
o el isthe function, e2 isthe argument

o inyour favorite language: e1(e2)

(Here each of e, el, e2 canitself be a variable, abstraction, or application)

Examples
(\x -> x) -- The identity function (id) that returns its input
(\x -> (\y ->vy)) -- A function that returns (id)

(\f -> (f (\x -> x))) -- A function that applies its argument to id

QUIZ

Which of the following terms are syntactically incorrect?
A (\(\x -> x) ->y)

B. (\x -> (x x))

C. (\x -> (x (y x)))

D.AandC

E. all of the above

Examples
(\x -> x) -- The identity function (id) that returns its input
(\x -> (\y ->vy)) -- A function that returns (id)

(\f -> (f (\x -> x))) -- A function that applies its argument to id

How do I define a function with two arguments?

e e.g. afunction that takes x and y andreturns y ?

(\x -> (\y ->vy)) -- A function that returns the identity function
-- OR: a function that takes two arguments
-- and returns the second one!

How do I apply a function to two arguments?

e eg.apply (\x -> (\y -> y)) to apple and banana?

(C(\x -> (\y ->y)) apple) banana) -- first apply to apple,
-- then apply the result to banana

Syntactic Sugar

instead of we write
\x -> (\y -> (\z -> e)) \x ->\y ->\z > e
\x ->\y ->\z ->e \xyz->e
(((el e2) e3) e4) el e2 e3 e4
\Xy ->y -- A function that that takes two arguments

-- and returns the second one. ..

(\x y ->y) apple banana -- ... applied to two arguments

Semantics : What Programs Mean

HowdoI “run” / “execute” a A-term?

Think of middle-school algebra:

(T +2)*((3*8)-2)

3 * ((3*8) - 2)
N 3 * (24 - 2)
N 3 * 22
N 66

Execute = rewrite step-by-step

o Following simple rules
e until no more rules apply

Rewrite Rules of Lambda Calculus

1. B-step (aka function call)
2. a-step (aka renaming formals)

But first we have to talk about scope

Semantics: Scope of a Variable
The part of a program where a variable is visible
In the expression (\x -> e)

e x isthe newly introduced variable

o e isthescope of x

e any occurrence of x in (\x -> e) isbound (by the binder \x)

For example, x is bound in:

(\x -> x)

(\x -> (\y -> x))

An occurrence of x in e is free if it’s not bound by an enclosing abstraction

For example, x is free in:

(xy) -- no binders at all!
Ay -> (xy)) -- no |x binder
((\x -> (\y ->y)) X) -- x is outside the scope of the |x binder;

-- intuition: it's not "the same" x

https://ucsd-cse130.github.io/wi24/index.html

QUIZ

Is x bound or free in the expression ((\x -> x) x)?
A. first occurrence is bound, second is bound

B. first occurrence is bound, second is free

C. first occurrence is free, second is bound

D. first occurrence is free, second is free

EXERCISE: Free Variables

Anvariable x is freein e if there exists a free occurrence of x in e

We can formally define the set of all free variables in a term like so:

FV(x) =72
FV(\x -> e) = 222
FV(el e2) =227
Closed Expressions

If e has no free variables it is said to be closed

e Closed expressions are also called combinators

What is the shortest closed expression?

Rewrite Rules of Lambda Calculus

1. B-step (aka function call)
2. a-step (aka renaming formals)

Semantics: Redex

Aredex is a term of the form

((\x -> el1) e2)
A function (\x -> el)

e X isthe parameter

e el isthereturned expression
Applied to an argument e2

e e2 istheargument

Semantics: B-Reduction

A redex b-steps to another term ...

(\x -> el) e2 =b> el[x := e2]

where el[x := e2] means

“e1 with all free occurrences of x replaced with e2”

Computation by search-and-replace:
If you see an abstraction applied to an argument,

o In the body of the abstraction
e Replace all free occurrences of the formal by that argument

We say that (\x -> el) e2 g-stepsto el[x := e2]

Redex Examples

((\x -> x) apple)

=b> apple

Is this right? Ask Elsa

QUIZ

((\x -> (\y ->y)) apple)
=b> ?2?

A. apple

B. \y -> apple

C. \x -> apple

D.\y ->y

E. \x ->y

QUIZ

(\x -> (((y x) y) x)) apple

=b> 27?
A. (((apple apple) apple) apple)
B. (((y apple) y) apple)

C.((yy)y)w

D. apple

QUIZ

((\x -> (x (\x -> x))) apple)
=b> 772

A. (apple (\x -> x))

B. (apple (\apple -> apple))
C. (apple (\x -> apple))

D. apple

E. (\x -> x)

EXERCISE

What isaA-term fill_this_1in such that

fill_this_1in apple
=b> banana

ELSA: https://goto.ucsd.edu/elsa/index.html

Click here to try this exercise

A Tricky One

((\x -> (\y ->x)) y)

=b>\y ->y

Is this right?

Something is Fishy

(\x -> (\y ->x)) vy

=b> (\y ->y)
Is this right?

Problem: The free y in the argument has been captured by \y in body!

Solution: Ensure that formals in the body are different from free-variables of argument!

Capture-Avoiding Substitution

We have to fix our definition of s-reduction:

(\x -> el) e2 =b> el[x := e2]

where el[x := e2] means * et -with-all free-occtrreneces-of x replaced-with-e2 2

e el with all free occurrences of x replaced with e2
e aslong as no free variables of e2 get captured

Formally:
x[x := e] =e
y[x := e] =y --as x /=y

(el e2)[x := e] (e1[x := e]) (e2[x :=e])

(\x -> el1)[x := €]

(\y -> e1)[x := €]
| not (y in FV(e)) = \y -> el[x := e]

Oops, but what to do if y is in the free-variables of e ?

e ie.if \y -> ... may capture those free variables?

Rewrite Rules of Lambda Calculus

1. B-step (aka function call)
2. a-step (aka renaming formals)

Semantics: a-Renaming

\Xx ->e =a> \y -> e[x :=y]
where not (y in FV(e))

e We rename a formal parameter x to y
e By replace all occurrences of x in the body with y

e Wesaythat \x -> e a-stepsto \y -> e[x := y]

Example:
(\x ->x) =a> (\y ->y) =a (\z ->2)

All these expressions are «-equivalent

What’s wrong with these?

-- (A)
(\f -> (f x)) =a> (\x -> (x x))

-- (B)
(W -> Ay >y y) =2 ((\x->0\z->12)) 2)

Tricky Example Revisited

(A\x -> (\y ->x)) v)

[

(\x -> el) -- Q: Why leave ‘el1' unchanged?

-- rename 'y' to 'z' to avoid capture

=a> ((\x -> (\z -> x)) y)

-- now do b-step without capture!

=b> (\z ->y)

To avoid getting confused,
e you can always rename formals,

e so different variables have different names!

Normal Forms
Recall redex is a 1-term of the form
((\x -> e1) e2)

A J-term is in normal form if it contains no redexes.

https://goto.ucsd.edu/elsa/index.html
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434473_24432.lc

which ot the Iollowing term are not in normal jorm ¢
A x

B. (x y)

C. ((\x ->x) y)

D. (x (\y ->y))

E.CandD

Semantics: Evaluation

A-term e evaluatesto e' if

1. There is a sequence of steps
e =?>e.1=2>...=2>eN=2>¢e'
where each =?> iseither =a> or =b> and N >= 0

2. e' isinnormal form

Examples of Evaluation
((\x -> x) apple)

=b> apple

(\f -> f (\x -> x)) (\x -> x)

=7> ?7?

(\x -> x x) (\x -> x)

=?> 222

Elsa shortcuts

Named 1-terms:

let ID = (\x -> x) ~-- abbreviation for (|x -> x)

To substitute name with its definition, use a =d> step:

(ID apple)
=d> ((\x -> x) apple) ~-- expand definition
=b> apple -- beta-reduce
Evaluation:

e el =*> e2: el reducesto e2 in 0 or more steps
o where each stepis =a>, =b>, or =d>

e el =~> e2: el evaluatesto e2 and e2 isin normal form

EXERCISE

Fill in the definitions of FIRST, SECOND and THIRD such that you get the following

behavior in elsa

let FIRST = fill_this_1in
let SECOND = fill_this_1in
let THIRD = fill_this_in
eval exl :
FIRST apple banana orange
=*> apple
eval ex2 :
SECOND apple banana orange
=*> banana
eval ex3 :

THIRD apple banana orange

=*> orange

ELSA: https://goto.ucsd.edu/elsa/index.html
Click here to try this exercise
Non-"Terminating Evaluation
(Ax > (x x)) (\x -> (x x)))

=b> ((\x -> (x x)) (\x -> (x x)))

Some programs loop back to themselves ... never reduce to a normal form!

This combinator is called Q

What if we pass 2 as an argument to another function?

let OMEGA = ((\x -> (x x)) (\x -> (x x)))

((\x -> (\y ->y)) OMEGA)

Does this reduce to a normal form? Try it at home!

C calceds

Programming in A-calculus
00 - lom — Fflidoy

Real languages have lots of features - 6 =z [(e[e’_)(\x=e

" A Booleans 2 | @Ces) |fation(x){ retorn e
e Records (structs, tuples)
o Numbers AX—X Punchion (2 § reorn =3
e Lists A "(M_)j) &w:»&lziw{ et 43
o Functions [we got those] 5
e Recursion le = apde

(Ax>=) appe = ap

h a8 ame =Y
Lets see how to encode all of these features with the 1-calculus.

(Yx»e) ¢ = elz=e]
ITE cond = y

JF cond THEN € HSE €30
Y eond i "ha = £
avd & [= €,
T = (D x sy = 7)) aple mae =
‘B’ = Ax-o(dg 2 Y)

Syntactic Sugar
e
T \xyz » ooy Vx>(Ng-> (2> BodW)

1 23 ' = :

instead of we write
\x ->(\y > (\z ->e)) \x->\y->\z->e
\x ->\y ->\z ->e \Xyz->e
(((e1 e2) e3) e4) el e2 e3 e4

C(e eL) 69 €q>
\Xy ->y -- A function that that takes two arguments

-- and returns the second one. ..

(\x y ->y) apple banana -- ... applied to two arguments

A-calculus: Booleans
How can we encode Boolean values (TRUE and FALSE) as functions?

Well, what do we do with a Boolean b ?

Make a binary choice

e if b then el else e2

Booleans: API

We need to define three functions

22 \\X Ej > K
222 \¥y->

\b x vy -> -- 1f b then x else y

such that (M) < b * 5)

ITE TRUE apple banana =~> apple

let TRUE
let FALSE
let ITE

ITE FALSE abple banana =~> banana

(Here, let NAME = e means NAME is an abbreviation for e)

Booleans: Implementation

let TRUE = \xy -> X -- Returns its first argument
let FALSE = \x y ->y -- Returns its second argument
let ITE =\bxy ->b xy -- Applies condition to branches

-- (redundant, but improves readability)

Example: Branches step-by-step

eval ite_true:
ITE TRUE el e2

=d> (\bxy ->b X y) TRUE el e2 -- expand def ITE
=b> (\x y -> TRUE x vy) el e2 -- beta-step

=b> (\y -> TRUE el y) e2 -- beta-step

=b> TRUE el e2 -- expand def TRUE
=d> (\x y -> x) el e2 -- beta-step

=b> (\y ->el) e2 -- beta-step

=b> el

Example: Branches step-by-step
Now you try it!
Can you fill in the blanks to make it happen?

eval ite_false:
ITE FALSE el e2

-- fill the steps in!

=b> e2

EXERCISE: Boolean Operators

ELSA: https://goto.ucsd.edu/elsa/index.html Click here to try this exercise

Now that we have ITE it’s easy to define other Boolean operators:

b FALE TRUE b e FASE TRUE
let NOT = \b -> 3R
let OR = \bl b2 -> ?2? IF (brsTous) FHSE TRUE
let AND = \bl b2 -> 222 ITE b FAE TRUE

When you are done, you should get the following behavior:

eval ex_not_t:
NOT TRUE =*> FALSE

eval ex_not_f:
NOT FALSE =*> TRUE

eval ex_or_ff:
OR FALSE FALSE =*> FALSE

eval ex_or_ft:
OR FALSE TRUE =*> TRUE

eval ex_or_ft:
OR TRUE FALSE =*> TRUE

eval ex_or_tt:
OR TRUE TRUE =*> TRUE

eval ex_and_ff:
AND FALSE FALSE =*> FALSE

eval ex_and_ft:
AND FALSE TRUE =*> FALSE

eval ex_and_ft:
AND TRUE FALSE =*> FALSE

eval ex_and_tt:
AND TRUE TRUE =*> TRUE

l}gmmming in A-calculus

* Booleans [done]

e Records (structs, tuples)
° ﬂﬂﬂgg;rs

e Lists

o Functions [we got those]
e Recursion

A-calculus: Records

Let’s start with records with two fields (aka pairs)
What do we do with a pair?

1. Pack two items into a pair, then
2. Get first item, or
3. Get second itemn.

FirsT KPACK apple bomana) 5

= a/)ple

Seeop |(PACK apple bomaua)

=V homauno-

ST BoxX — apple

SN BoX s bamana

\b 5 e b apple bamana

W\

Box
FST Box = Box TRUE > apple

. Box ~o> bora
Pairs: A =

We need to define three functions

let PAIR = \x y -> 22? -- Make a pair with elements x and y
--{ fst : x, snd : y }

let FST = \p -> 22? -- Return first element
-- p.fst

let SND = \p -> 22? -- Return second element
-- p.snd

such that

eval ex_fst:
FST (PAIR apple banana) =*> apple

eval ex_snd:
SND (PAIR apple banana) =*> banana

Pairs: Implementation
Apair of x and y is just something that lets you pick between x and y !
let PAIR = \x y -> (\b -> ITE b x y)
i.e. PAIR x y isafunction that
e takes a boolean and returns either x or y
We can now implement FST and SND by “calling” the pair with TRUE or FALSE

let FST = \p -> p TRUE -- call w/ TRUE, get first value
let SND = \p -> p FALSE -- call w/ FALSE, get second value

EXERCISE: Triples

How can we implement a record that contains three values?
ELSA: https://goto.ucsd.edu/elsa/index.html
Click here to try this exercise

let TRIPLE = \x y z -> 7222 P (PhR x y) = PHR X (PhiR Yy =D

let FST3 =\t -> 2?2 71 (&1t
let SND3 =\t -> ?2? S/\@CFth)
let THE?) = \t -> ?22? gND +

https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434130_24421.lc
http://goto.ucsd.edu:8095/index.html#?demo=ite.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585435168_24442.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434814_24436.lc

eval exl: N -
FST3 (TRIPLE apple banana orange)
=*> apple

PAie

eval ex2:
SND3 (TRIPLE apple banana orange)
=*> banana

eval ex3:

THD3 (TRIPLE apple banana orange)
=*> orange

(T e ap;@ bausue)

WW

e, €
<\>(Lj~>><) apple o= x
L~ Y [\ e

rogramming in A-calculus

/ oleans [done]
%Zcords (structs, tuples) [done]

e Lists
o Functions [we got those]
e Recursion

PO Lody

/ &=

(\gee) Q, —) §[7g;~_€’
\/TF;\W/ are 'feplace all %
C\xshda) Z%ﬁ%ﬂf)wﬂﬂ

(\xoxh aple = apple
Ny B> /

[Na Al Lop = 803)))

Arg, argz 4353
A-calculus: Numbers) Txﬁ(m» EZSDH’E%::Q(&D)

Let’s start with natural numbers (0, 1, 2, ...)

What do we do with natural numbers? < <<\§(5 (\\5 > (\x > 6edY))) e I > QZ) e S)

e Count: 0, inc

o Arithmetic: dec, +, -, * E (/<\\5 K (\TA) @”@‘j)) ez) €%)
e Comparisons: ==, <=, etc N
'n' = \'F = ”:?(‘FGZ L‘Fz)))
K,/’“V—\~_.) ‘—‘;%
n-hmes
L = \F)(—a ﬁﬁ
2 = \@Xﬁ F(Fx)
‘30 = s £REX)
)
3 timeg

Natural Numbers: API

We need to define:

L/Afamily of numerals: ZERO, ONE, TWO, THREE, ...
e Arithmetic functions: INC, DEC, ADD, SUB, MULT
e Comparisons: IS_ZERO, EQ

Such that they respect all regular laws of arithmetic, e.g.

IS_ZERO ZERO =~> TRUE
IS_ZERO (INC ZERO) =~> FALSE
INC ONE =~> TWO

Natural Numbers: Implementation

Church numerals: a number N is encoded as a combinator that calls a function on an
argument N times

let ONE =\fx->1”x

let TWO = \f x -> f (f x)

let THREE = \f f (f (f x))

let FOUR = \f x -> f (f (f (f x)))

let FIVE = \f f(f (F (F (f x)))
let SIX = \f FOCF (F(F (F7(F' x)))))

0
\

X X X X
'
v

'
\%

QUIZ: Church Numerals

Which of these is a valid encoding of ZERO ?

o A: let ZERO = J(\f = (V= X))

B: let ZERO = \f x -> f =——
N —

C: let ZERO = \f x -> f x =— 'one’

(]

D: let ZERO = \X -> X =— M‘anj /r7£/1

——

E: None of the above

(]

\{Bx—ex = B
\x gy >y = e

Does this function look familiar?

/l—calculus: Increment

- Call ‘f* on "x' one more time than 'n° does
let INC = \n -> (\f x -> 22?)

INC 2GeD =5 ONG

e Tees = UK

+im€s,
e = wnolExo fnén) <l><";'@x>
ik = \ws(\re wf (F0) PR
n |
Example:

eval inc_zero :
INC ZERO
=d> (\n f x -> f (n f x)) ZERO
=b> \f x -> f (ZERO f x)
=*> \f x -> f x

=d> ONE

EXERCISE

Fill in the implementation of ADD so that you get the following behavior

Click here to try this exercise

let ZERO = \f x -> X

let ONE = \f x -> f x

let TWO = \f x -> f (f x)
let INC =\nf x ->f (n f x)

let ADD = fill_this_1in
eval add_zero_zero: v m
ADD ZERO ZERO =~> ZERO e

A
f-FE (- fR20))
eval add_zero_one:
ADD ZERO ONE =~> ONE &ADD = \Wm"(\ﬁ%—) }::z,),ﬁ (m i Z;))

n

eval add_zero_two: :
ADD ZERO TWO =~> TWO ‘toll § oom . ntm hmae

eval add_one_zero:
ADD ONE ZERO =~> ONE

eval add_one_zero:
ADD ONE ONE =~> TWO

eval add_two_zero:
ADD TWO ZERO =~> TWO

((v £
QUIZ nfx =L (f=)
How shall we implement ADD ?Vv\:'-:” '

NG (INC (Ine m
A. let ADD = \/((,IN_C)QLA((\S >

ni v fimos
y B.let ADD = \n m ->(INC n)m

— C. let ADD = \n m ->nm INC

{7, n (ma)
. ADD - IN

x D. let \nm->n (u /7(”') "
x E. let ADD = \n m -> n (INC m)

Mt

\nm—*@ IML)M)

@Cx)z)b e)

A-calculus: Addition

Call “f' on “x° exactly 'n + m’ times
let ADD = \nm -> n INCm

Example:

eval add_one_zero :
ADD ONE ZERO
=~> ONE

0% (/’rDD m) O
m (ADD n) O

n M+(‘,\~M4—(m4- (7’7"'2))
-

(n INC) m
|‘_..+\+l+|+m/

QuUIZ o

n 'f)’mes
How shall we implement MULT ?

A. let MULT = \nm -> n ADD m
B. let MULT = \n m -> n (ADD m) ZERO v~
C. let MULT = \n m -> m (ADD n) ZERO \/

(D. let MULT

E. let MULT = \n m -> (n ADD m) ZERO

\nm->n

A-calculus: Multiplication

Call “f' on ‘x° exactly "n * m' times
let MULT = \n m -> n (ADD m) ZERO

Example:

eval two_times_three :
MULT TWO ONE
=~> TWO

gL

/

DEC v = \fX% Cull Cou e Mol fiares
n fu‘” b

Programming in A-calculus

e Booleans [done]

e Records (structs, tuples) [done] Z L = lﬁMC’
o Numbers [done] 4 ﬁ X 2 @ R \“z‘ > FALSE
« Functions [we got those] e 0 f x

e Recursion

_ - n(\ﬁm)ﬁzwg
570 e =N T

) [wart Result
nw=0 —> TRUE &S
el > FhGE 2P (TPUE)
L2 —> FARSE % (Y (UE))
W3 —> FAE BRI UB))

IS

A-calculus: Lists

Lets define an API to build lists in the A-calculus.

An Empty List
{_ AnEmpty

NIL

2 Constr ist
—

Alist with 4 dlements -~
CONS apple|(CONS banana (CONS cantaloupe (\CONS dragon@)

intuitively CPNS h t creates|anew list with

e head h

ail t

Destructing a list

e HEAD 1 returns the first element of the list
==
e TAIL 1 returns the rest of the list

—
HEAD (CONSW(CONS banana (CONS cantaloupe (CONS dragon NIL)))) }

=~> apple =~

————

TAILl(CONS apple !(CONS banana (CONS cantaloupe (CONS dragon NIL)))) J\

=~> CONS banana Tantaloupe (CONS dTagomhi)) ~

(owe h + = (prex o t)
AR\
p T

) ek
A-calculus: Lists
let NIL = 2272 FASE
let CONS = 2?27 PACK
let HEAD = 227 18T

let TAIL = 222 SN)

eval exHd:
HEAD (CONS apple (CONS banana (CONS cantaloupe (CONS dragon NIL))))
=~> apple

eval exTl
TAIL (CONS apple (CONS banana (CONS cantaloupe (CONS dragon NIL))))
=~> CONS banana (CONS cantaloupe (CONS dragon NIL)))

EXERCISE: Nth

Write an implementation of GetNth such that

. ‘ GetNth n 1 'returns the n-th element of the list 1

Assume that 1 has n or more elements

let GetNth = 22?

eval nthi : o
GetNth ZERO (CONS apple (CONS banana (CONS cantaloupe NIL)))
=~> apple

eval nthi :
GetNth ONE (CONS apple (CONS banana (CONS cantaloupe NIL)))
=~> banana

eval nth2 : 2z~
GetNth TWO (CONS apple (CONS banana (CONS cantaloupe NIL)))
=~> cantaloupe

Click here to try this in elsa

(ret Ntle = \n L = gr(n s)

A-calculus: Recursion

I want to write a function that sums up natural numbersupto n:

.

such that we get the following behavior

eval exSum@: SUM ZERO =~> ZERO
eval exSuml: SUM ONE =~> ONE
eval exSum2: SUM TWO =~> THREE
eval exSum3: SUM THREE =~> SIX

Can we write sum using Church Numerals?

Click here to try this in Elsa

QUIZ

You can write SUM using numerals but its tedious.

Is this a correct implementation of SUM?

let SUM = \n -> ITE (ISZ n)
ZERO
(ADD n (SUM (DEC n)))

A.Yes

B. No

No!

https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585436042_24449.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1586466816_52273.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1586465192_52175.lc

o Named terms in Elsa are just syntactic sugar
e To translate an Elsa term to A-calculus: replace each name with its definition

\n -> ITE (ISZ n)
ZERO
(ADD n (SUM (DEC n))) -- But SUM is not yet defined!

Recursion:

e Inside this function

e Want to call the same function on DEC n

Looks like we can’t do recursion!

e Requires being able to refer to functions by name,
e But A-calculus functions are anonymous.

Right?

A-calculus: Recursion

Think again!

Recursion:
Instead of

o Insidethisfunetionwantto-callthe same funetionon DEC—H
Lets try

e Inside this function I want to call some function rec on DEC n

e And BTW, Iwant rec to be the same function

Step 1: Pass in the function to call “recursively”

let STEP =
\rec -> \n -> ITE (ISZ n)
ZERO
(ADD n (rec (DEC n))) -- Call some rec

Step 2: Do some magic to STEP, so rec isitself
\n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))
That is, obtain a term MAGIC such that

MAGIC =*> STEP MAGIC

A-calculus: Fixpoint Combinator
Wanted: a A-term FIX such that

e FIX STEP calls STEP with FIX STEP as the first argument:

(FIX STEP) =*> STEP (FIX STEP)

(In math: a fixpoint of a function f(x) is a point x, such that f(x) = x)

Once we have it, we can define:

let SUM = FIX STEP
Then by property of FIX we have:

SUM =*> FIX STEP =%> STEP (FIX STEP) =%> STEP SUM
and so now we compute:

eval sum_two:
SUM TWO
=*> STEP SUM TWO
=*> ITE (ISZ TWO) ZERO (ADD TWO (SUM (DEC TWO)))
=*> ADD TWO (SUM (DEC TWO))
=*> ADD TWO (SUM ONE)
=*> ADD TWO (STEP SUM ONE)
=*> ADD TWO (ITE (ISZ ONE) ZERO (ADD ONE (SUM (DEC ONE))))
=*> ADD TWO (ADD ONE (SUM (DEC ONE)))
=*> ADD TWO (ADD ONE (SUM ZERO))
=*> ADD TWO (ADD ONE (ITE (ISZ ZERO) ZERO (ADD ZERO (SUM DEC ZERO)))
=*> ADD TWO (ADD ONE (ZERO))
=*> THREE

How should we define FIX ???

The Y combinator

Remember Q?

(\x -> x x) (\x -> x x)
=b> (\x -> x x) (\x -> x x)

This is self-replcating code! We need something like this but a bit more involved...

The Y combinator discovered by Haskell Curry:

let FIX = \stp -> (\x -> stp (x x)) (\x -> stp (x x))

How does it work?

eval fix_step:
FIX STEP
=d> (\stp -> (\x -> stp (x x)) (\x -> stp (x x))) STEP
=b> (\x -> STEP (x x)) (\x -> STEP (x x))
=b> STEP ((\x -> STEP (x x)) (\x -> STEP (x x)))

- ANAAANANAAAAAN t—his is FIX STEP AAANAANAAAAAN

That’s all folks, Haskell Curry was very clever.

Next week: We’ll look at the language named after him (Haskell)

Generated by Hakyll, template by Armin Ronacher, suggest improvements here.

http://jaspervdj.be/hakyll
http://lucumr.pocoo.org/
https://github.com/ucsd-progsys/liquidhaskell-blog/

