cse130 Calendar Contact Grades Lectures Assignments Links Piazza Canvas

Dy PN Haskell Cras
. ki

From the Lambda Calculus to Haskell

What is Haskell?

A typed, lazy, purely functional programming language

Haskell = 1-calculus ++

e better syntax

o types
e built-in features

o booleans, numbers, characters
o records (tuples)

o lists

o recursion

<\X% %) el

Programming in Haskell

Computation by Calculation

Substituting equals by equals

Computation via Substituting Equals by Equals

[(1+3)*(4+5)
-- subst 1 + 334

==> 4 * (4_-t_5)
ﬁ(-- subst 4 + 539
==> 4 *9
-- subst 4 * 9 3 36
==> 36

Computation via Substituting Equals by Equals

Equality-Substitution enables Abstraction via Pattern Recognition

/

S Mhezuxd Y

TAbstmction via Pattern Remn

Repeated Expressions

x y z
pat =\xy2 > xx{4e) 31 % (42 + 56) = pat 3! 42 56
pat x yr = x*(‘j'f'i) 70 * (12 + 95) = pat 70 2 9

90 * (68 + 12) = tdo &
Recognize Pattern as A-function
pat = \xyz ->x *(y+2z)
Equivalent Haskell Definition
pat xyz= x *(y+2z)
Function Call is Pattern Instance

pat 31 42 56 =*> 31 * (42 + 56) =*> 31 * 98 =*> 3038
pat 70 12 95 =*> 70 * (12 + 95) =*> 70 * 107 =*> 7490
pat 90 68 12 =*> 90 * (68 + 12) =*> 90 * 80 =*> 7200

Key Idea: Computation is substitute equals by equals.

Programming in Haskell

Substitute Equals by Equals

Thats it! (Do-not think of registers, stacks-frames etc.)

P
l\&%nts of Haskell
i)(% E xpression SN Value o e W‘Q

Wpi le-time.
A\

Type

i gt

o Core program element is an expression
e Every valid expression has a type (determined at compile-time)
e Every valid expression reduces to a value (computed at run-time)

1-typed* expressions are rejected at compile-time before execution

e likein Java
e not like 2-calculus or Python ...

weirdo = 1 0 -- rejected by GHC
C qu} 20005

< fifben o ‘P
e \W Tweript —> Tepesuie
Puteon 17 Puby > Gbet

hy are types good?

o Helps with program design
e Types are contracts (ignore ill-typed inputs!)
e Catches errors early

(]

e Allows compiler to generate code E
Enables compiler optimizations

The Haskell Eco-System

e Batch compiler: @Zompile and run large programs
o Interactive Shell ghci Shell to interactively run small programs online

e Build Tool stack Build tool to manage libraries etc.

Interactive Shell: ghc1

$ stack ghci

:load file.hs
:type expression
:info variable

A Haskell Source File

A sequence of top-level definitions x1, x2, ...
e Each has type type_1, type_2,...
e Each defined by expression expr_1, expr_2, ...

x_1 :: type_1

x_1 = expr_1

X_2 :: type_2
x_2

expr_2

Basic Types

ex1l :: Int
31 * (42 + 56) -- this is a comment

ex1

ex2 :: Double

ex2 =3 * (4.2 + 5.6) -- arithmetic operators "overloaded"

ex3 :: Char

ex3 = 'a’ -- 'a', 'b', 'c', etc. built-in ‘Char’ values
ex4 :: Bool

ex4 = True -- True, False are builtin Bool values

ex5 :: Bool

ex5 = False

QUIZ: Basic Operations

ex6 :: Int
ex6 =4 + 5
ex7 :: Int
ex7 =4 %5

ex8 :: Bool
ex8 =5 > 4 \pﬁ \

quiz = if ex8 then ex6 else ex7

What is the type of quiz? /Uu(’
A. Int
B. Bool

C. Error!

QUIZ: Basic Operations
ex6 :: Int /TE TW e, €a

ex6 =4 + 5 /ﬁ €‘
N B exg Hun exb else ext
ex7 =4 * 5 M

ex8 :: Bool - /?e ‘2’ {'Cu’» ‘QXé 6@’ @X?
exg =5 > 4 - (ZQWZ/L_LE fCee Kﬁ_@&e ext

quiz :: 2% {M —7 eXé
quiz = if ex8 then ex6 else ex7

What is the value of quiz?
q - U[
A. 9
B. 20
C. Other!

Function Types

In Haskell, a function is a value that has a type
—_—

A function that

o takes input of type A
e returns output of type B

For example

isPos :: Int -> Bool
isPos = \n -> (x > 0)

Define function-expressions using \ like in 2-calculus!
But Haskell also allows us to put the parameter on the left
isPos :: Int -> Bool

isPos n = (x > 0)
=

(Meaning is identical to above definition with \n -> ...)

Multiple Argument Functions
A function that

o takes three inputs A1, A2 and A3
e returns one output B has the type

Al ->éﬁ2 ->Qx3 ->8)
T 4
For example

pat :: Int -> Int -> Int -> Int
pat = \x y z -> x * (y + z)

which we can write with the params on the left as

pat :: Int -> Int -> Int -> Int
pat x y z = x * (y + z)

QUIZ

What is the type of quiz ?

Yol
. KA TE ~ . y
quiz :: 222 o 0 Qg = \x y=-> ¥9¢
qutzxy:():+3l/)>0 Bodt
int ||1+ \ \ U N \
A. Int -> Int S AWX= (MW)
-3 B. Int -> Bool it - Int > ‘ool

» —

C. Int -> Int -> Int

~—>.E). Int -> Int -> BoolK

E. (Int, Int) -> Bool

Function Calls

A function call is exactly like in the 1-calculus
el e2
where el is afunction and e2 is the argument. For example

>>> isPos 12
True

>>> 1sPos (0 - 5)
False

Multiple Argument Calls

With multiple arguments, just pass them in one by one, e.g.
(((e el) e2) e3)

For example

>>> pat 31 42 56
3038

EXERCISE

Write a function myMax that returns the maximum of two inputs

myMax :: Int -> Int -> Int
myMax = ???

When you are done you should see the following behavior:

>>> myMax 10 20
20

>>> myMax 100 5
100

EXERCISE

Write a function sumTo such that sumTo n evaluatesto © + 1 + 2 + ... + n

sumTo :: Int -> Int

sumTo n = 2??
When you are done you should see the following behavior:

>>> sumTo 3
6

https://repl.it/languages/haskell
https://ucsd-cse130.github.io/wi24/index.html

>>> sumTo 4
10
>>> sumTo 5
15

(&,)

How to Return Multiple Outputs?

(€,2,%. . €
\

~

(\/‘ Vg, \/\A>

Tuples

A type for packing n different kinds of values into a single “struct”

(€|’ LRI ‘en)
(T1,..., Tn)
For example

tup2 :: (Char, Double, Int)

tup2 = ('a’, 5.2, 1)
| b D
! ™
o P

QUIZ

What is the type 22?7 of tup3?

(7 5.2

tup3 :: 22?7
f}tupB - (7, 5.2), '@é)ﬁ) (Um‘, Double)) ﬁ‘b/)

A. (Int, Bool)
+ B. (Int, Double, Bool)
< C. (Int, (Double, Bool)) L

1D. ((Int, Double), Bool))

E. (Tuple, Bool)

Extracting Values from Tuples
We can create a tuple of three values el, e2,and e3 ...
tup = (el, e2, e3)

... but how to extract the values from this tuple?
Pattern Matching via case-of expressions

fst3 :: (t1, t2, t3) -> t1
fst3 t = case t of
(x1, x2, x3) -> x1

snd3 :: (t1, t2, t3) -> t2
snd3 t = case t of
(x1, x2, x3) -> x2

thd3 :: (t1, t2, t3) -> t3

thd3 t = case t of
(x1, x2, x3) -> x3

QUIZ

What is the value of quiz defined as

:: (Char, Double, Int)
tup2 = ('i', 5.2, 7)

snd3 :: (t1, t2, t3) -> t2
snd3 t = case t of

(x1, x2, x3) -> x;,

quiz = snd3 tup2 nd 3 (‘[". .2 ,3)
A. 'a’ — CARL (',{"‘" 5}2) ?) ‘) -
rofgq
B.5.2
(’Zl A2 /,(3

C.7
D. ('a', 5.2) — 52

—
E. (5.2, 7)

(’(4_(_' 71%9, 57})

.

. uples (T
Lists = -T‘ sz, 19
B
Unbounded Sequence of values of type T
7] /1315 }; TJ
For example
chars :: [Char]

chars = ['a', 'b", 'c']

ints :: [Int]
ints = [1, 3, 5, 7]

pairs :: [(Int, Bool)]
pairs = [(1,True), (2,False)]

QUIZ

What is the type of things defined as

things :: 22?
g

[things = [([1]) [2, 31, [4, 5, €]].,.J [

o [u5e) (1]

A [Int]
B. ([Int], [Int], [Int])

™~
U
J
™
§+ S
g |

C. [(Int, Int, Int)]
D{[[Intlil) List “f (L3t Cl) /,b-f)

E. List

4N Ha

A

[;‘
v

{

List's Values Must Have The SAME Type!

The type [T] denotes an unbounded sequence of values of type T
Suppose you have a list

oops = [1, 2_’ 'c']

Thereisno T that we can use

e Aslast elementis not Int
o First two elements are not Char !

Result: Mysterious Type Error!

Constructing Lists
There are two ways to construct lists
let [1] -- creates an empty list
[h:t -- creates a list with "head" 'h' and "tail" t
ons f - -
;‘I {\ o {
For example
>>> 3 : []
[3]

>>2 : (3 :[])
[2, 3]

>>> 1 : (2 : (3 :[D)
[1, 2, 3]

Cons Operator : is Right Associative

x1 ¢ x2 : x3 : x4 : tmeans x1 : (x2 : (x3 : (x4 : t)))
So we can just avoid the parentheses.

Syntactic Sugar

Haskell lets you write [x1, x2, x3, x4] insteadof x1 : x2 : x3 : x4 : []

Functions Producing Lists

Lets write a function copy3 that

e takes an input x and

o returns a list with three copies of x

copy3 :: 72?2
copy3 x = 7277

When you are done, you should see the following

>>> copy3 5
[5, 5, 5]

>>> copy3 "cat"
["Cat”’ Hcatn’ Ilcatll]

Lets write some Functions
A Recipe

Step 1: Write some tests

Step 2: Write the type

Step 3: Write the code

PRACTICE: Clone

Write a function clone such that clone n x returns alist with n copies of x.
1. Tests

When you are done you should see the following behavior

>>> clone 0 "cat"

[l

>>> clone 1 "cat"

["cat"]

>>> clone 2 "cat"
[”Cat”’ ”Cat“]

>>> clone 3 "cat"
[”Cat”, ”Cat“, llcatn]

>>> clone 3 100
[100, 100, 100]

2. Types

3. Code

clone n x = 227

How does c lone execute?

(Substituting equals-by-equals!)

clone 3 100

=*> 2722

EXERCISE: Range

Write a function range such that range i j returns thelist of values [1, 1+1, ...,
il
range :: ?2?

range i1 j = 222
1. Tests

>>> range 4 3

[l

>>> range 3 3

(3]

>>> range 2 3
[2, 3]

>>> range 1 3
[1, 2, 3]

>>> range 0 3

[0, 1, 2, 3]
2. Type
range :: ?2?
3. Code

range = ???

Functions Consuming Lists

So far: how to produce lists.

Next how to consume lists!

EXERCISE

Lets write a function firstElem suchthat firstElem xs returns the first element xs if

itis a non-empty list, and 0 otherwise.
HINT: How to extract values from a list?
1. Tests

When you are done you should see the following behavior:

>>> firstElem []
0

>>> firstElem [10, 20, 30]
10

>>> firstElem [5, 6, 7, 8]
5

2. Type
firstElem :: 22?
3. Code

firstElem = ?2?

QUIZ

Suppose we have the following mystery function

mystery :: [a] -> Int
mystery 1 = case 1 of
1 o
(x:xs) -> 1 + mystery xs

What does mystery [10, 20, 30] evaluate to?

EXERCISE: Summing a List

Write a function sumList such that sumList [x1, ..., xn] returns x1 + ... + xn
1. Tests

When you are done you should get the following behavior:

>>> sumList []
0

>>> sumlist [3]
3

>>> sumlist [2, 3]
5

>>> sumlist [1, 2, 3]
6

2. Type
sumList :: [Int] -> Int
3. Code

sumList = 2??

Functions on lists: take

T) cnretdm o Lrvem bt e b mlom €2t v Al msde ~E V12

https://www.htdp.org/

L/CL O VVLILL d 1uliitLivii tv LaitT 1iloL 11 Titiliciito vi 4a 1ot Ao .

1. Tests

- >>> 2722
2. Type

take :: 727

Some useful library functions

-- | Length of the list
length :: [t] -> Int

-- | Append two lists
(++) =2 [t] -> [t] -> [t]

-- | Are two lists equal?

(:: N [t] -> [t] -> Bool

You can search for library functions on Hoogle!

3, Code

" “haskell
take = 2?2?

Some useful library functions

-- | Length of the list
length :: [t] -> Int

-- | Append two lists
(++) =2 [t] -> [t] -> [t]

-- | Are two lists equal?
(==) :: [t] -> [t] -> Bool

You can search for library functions on Hoogle!

Recap

run -time

Exme%wn —7

Value

Type

o Core program element is an expression

compile-time /
A\ ///

' E Tie Ho 1 aleFhe

e Every valid expression has a type (determined at compile-time)
e Every valid expression reduces to a value (computed at run-time) _.> ,(

Execution

e Basic values & operators

e Execution / Function Calls just substitute equals by equals

e Pack data into tuples & lists

e Unpack data via pattern-matching

Generated by Hakyll, template by Armin Ronacher, suggest improvements here.

https://www.haskell.org/hoogle/
https://www.haskell.org/hoogle/
http://jaspervdj.be/hakyll
http://lucumr.pocoo.org/
https://github.com/ucsd-progsys/liquidhaskell-blog/

