
Higher-Order Functions

Plan for this week
Last week:

user-defined data types

manipulating data-types with pattern matching and recursion

how to make recursive functions more e!cient with tail recursion

The long arc of history
Pattern matching is a very old PL idea …

Variants of LISP from 1970 by Fred McBride

… but will finally be added to Python 3.10

https://www.python.org/dev/peps/pep-0622/

def make_point_3d(pt):

 match pt:

 case (x, y):

 return Point3d(x, y, 0)

 case (x, y, z):

 return Point3d(x, y, z)

 case Point2d(x, y):

 return Point3d(x, y, 0)

 case Point3d(_, _, _):

 return pt

 case _:

 raise TypeError("not a point we support")

Plan for this week
Last week:

user-defined data types

manipulating data-types with pattern matching and recursion

how to make recursive functions more e!cient with tail recursion

This week:

code reuse with higher-order functions (HOFs)

some useful HOFs: map , filter , and fold

Recursion is good…
Recursive code mirrors recursive data

Base constructor -> Base case

Inductive constructor -> Inductive case (with recursive call)

But it can get kinda repetitive!

Example: evens
Let’s write a function evens :

-- evens [] ==> []

-- evens [1,2,3,4] ==> [2,4]

evens :: [Int] -> [Int]

evens [] = ...

evens (x:xs) = ...

Example: four-letter words
Let’s write a function fourChars :

-- fourChars [] ==> []

-- fourChars ["i","must","do","work"] ==> ["must","work"]

fourChars :: [String] -> [String]

fourChars [] = ...

fourChars (x:xs) = ...

Yikes! Most Code is the Same!
Lets rename the functions to foo :

foo [] = []

foo (x:xs)

 | x mod 2 == 0 = x : foo xs

 | otherwise = foo xs

foo [] = []

foo (x:xs)

 | length x == 4 = x : foo xs

 | otherwise = foo xs

Only di"erence is condition

x mod 2 == 0 vs length x == 4

Moral of the day

D.R.Y. Don’t Repeat Yourself!

Can we

reuse the general pattern and

plug-in the custom condition?

Higher-Order Functions
General Pattern

expressed as a higher-order function

takes plugin operations as arguments

Specific Operation

passed in as an argument to the HOF

The “filter” pattern

The filter Pattern

General Pattern

HOF filter

Recursively traverse list and pick out elements that satisfy a predicate

Specific Operations

Predicates isEven and isFour

filter instances

Avoid duplicating code!

QUIZ: What is the type of filter ?
-- evens [1,2,3,4] ==> [2,4]

evens :: [Int] -> [Int]

evens xs = filter isEven xs

 where

 isEven :: Int -> Bool

 isEven x = x `mod` 2 == 0

-- fourChars ["i","must","do","work"] ==> ["must","work"]

fourChars :: [String] -> [String]

fourChars xs = filter isFour xs

 where

 isFour :: String -> Bool

 isFour x = length x == 4

So what’s the type of filter ?

{- A -} filter :: (Int -> Bool) -> [Int] -> [Int]

{- B -} filter :: (String -> Bool) -> [String] -> [String]

{- C -} filter :: (a -> Bool) -> [a] -> [a]

{- D -} filter :: (a -> Bool) -> [a] -> [Bool]

{- E -} filter :: (a -> b) -> [a] -> [b]

Type of filter
-- evens [1,2,3,4] ==> [2,4]

evens :: [Int] -> [Int]

evens xs = filter isEven xs

 where

 isEven :: Int -> Bool

 isEven x = x `mod` 2 == 0

-- fourChars ["i","must","do","work"] ==> ["must","work"]

fourChars :: [String] -> [String]

fourChars xs = filter isFour xs

 where

 isFour :: String -> Bool

 isFour x = length x == 4

For any type a

Input a predicate a -> Bool and collection [a]

Output a (smaller) collection [a]

filter :: (a -> Bool) -> [a] -> [a]

filter does not care what the list elements are

as long as the predicate can handle them

filter is polymorphic (generic) in the type of list elements

Example: ALL CAPS!
Lets write a function shout :

-- shout [] ==> []

-- shout ['h','e','l','l','o'] ==> ['H','E','L','L','O']

shout :: [Char] -> [Char]

shout [] = ...

shout (x:xs) = ...

Example: squares
Lets write a function squares :

-- squares [] ==> []

-- squares [1,2,3,4] ==> [1,4,9,16]

squares :: [Int] -> [Int]

squares [] = ...

squares (x:xs) = ...

Yikes, Most Code is the Same
Lets rename the functions to foo :

-- shout

foo [] = []

foo (x:xs) = toUpper x : foo xs

-- squares

foo [] = []

foo (x:xs) = (x * x) : foo xs

Lets refactor into the common pattern

pattern = ...

The “map” pattern

The map Pattern

General Pattern

HOF map

Apply a transformation f to each element of a list

Specific Operations

Transformations toUpper and \x -> x * x

map f [] = []

map f (x:xs) = f x : map f xs

Lets refactor shout and squares

shout = map ...

squares = map ...

map instances

QUIZ
What is the type of map ?

map f [] = []

map f (x:xs) = f x : map f xs

(A) (Char -> Char) -> [Char] -> [Char]

(B) (Int -> Int) -> [Int] -> [Int]

(C) (a -> a) -> [a] -> [a]

(D) (a -> b) -> [a] -> [b]

(E) (a -> b) -> [c] -> [d]

-- For any types `a` and `b`

-- if you give me a transformation from `a` to `b`

-- and a list of `a`s,

-- I'll give you back a list of `b`s

map :: (a -> b) -> [a] -> [b]

Type says it all!

The only meaningful thing a function of this type can do is apply its first argument

to elements of the list

Hoogle it!

Things to try at home:

can you write a function map' :: (a -> b) -> [a] -> [b] whose behavior is

di"erent from map ?

can you write a function map' :: (a -> b) -> [a] -> [b] such that map' f xs

returns a list whose elements are not in map f xs ?

cse130 Calendar Contact Grades Lectures Assignments Links Piazza Canvas

loops

t 2020

D R.Y
don't Lepeet Yourself

toUpper
Ix x

ords Char lut
ordsxs map ord is

https://personal.cis.strath.ac.uk/conor.mcbride/FVMcB-PhD.pdf
https://ucsd-cse130.github.io/wi24/index.html

QUIZ
What is the value of quiz ?

map :: (a -> b) -> [a] -> [b]

quiz = map (\(x, y) -> x + y) [1, 2, 3]

(A) [2, 4, 6]

(B) [3, 5]

(C) Syntax Error

(D) Type Error

(E) None of the above

Don’t Repeat Yourself
Benefits of factoring code with HOFs:

Reuse iteration pattern

think in terms of standard patterns

less to write

easier to communicate

Avoid bugs due to repetition

Recall: length of a list
-- len [] ==> 0

-- len ["carne","asada"] ==> 2

len :: [a] -> Int

len [] = 0

len (x:xs) = 1 + len xs

Recall: summing a list
-- sum [] ==> 0

-- sum [1,2,3] ==> 6

sum :: [Int] -> Int

sum [] = 0

sum (x:xs) = x + sum xs

Example: string concatenation
Let’s write a function cat :

-- cat [] ==> ""

-- cat ["carne","asada","torta"] ==> "carneasadatorta"

cat :: [String] -> String

cat [] = ...

cat (x:xs) = ...

Can you spot the pattern?
-- len

foo [] = 0

foo (x:xs) = 1 + foo xs

-- sum

foo [] = 0

foo (x:xs) = x + foo xs

-- cat

foo [] = ""

foo (x:xs) = x ++ foo xs

pattern = ...

The “fold-right” pattern

The foldr Pattern

General Pattern

Recurse on tail

Combine result with the head using some binary operation

foldr f b [] = b

foldr f b (x:xs) = f x (foldr f b xs)

Let’s refactor sum , len and cat :

sum = foldr

cat = foldr

len = foldr

Factor the recursion out!

foldr instances

You can write it more clearly as

sum = foldr (+) 0

cat = foldr (++) ""

The “fold-right” pattern
foldr f b [a1, a2, a3, a4]

 ==> f a1 (foldr f b [a2, a3, a4])

 ==> f a1 (f a2 (foldr f b [a3, a4]))

 ==> f a1 (f a2 (f a3 (foldr f b [a4])))

 ==> f a1 (f a2 (f a3 (f a4 (foldr f b []))))

 ==> f a1 (f a2 (f a3 (f a4 b)))

Accumulate the values from the right

For example:

foldr (+) 0 [1, 2, 3, 4]

 ==> 1 + (foldr (+) 0 [2, 3, 4])

 ==> 1 + (2 + (foldr (+) 0 [3, 4]))

 ==> 1 + (2 + (3 + (foldr (+) 0 [4])))

 ==> 1 + (2 + (3 + (4 + (foldr (+) 0 []))))

 ==> 1 + (2 + (3 + (4 + 0)))

QUIZ
What does this evaluate to?

foldr f b [] = b

foldr f b (x:xs) = f x (foldr f b xs)

quiz = foldr (\x v -> x : v) [] [1,2,3]

(A) Type error

(B) [1,2,3]

(C) [3,2,1]

(D) [[3],[2],[1]]

(E) [[1],[2],[3]]

foldr (:) [] [1,2,3]

 ==> (:) 1 (foldr (:) [] [2, 3])

 ==> (:) 1 ((:) 2 (foldr (:) [] [3]))

 ==> (:) 1 ((:) 2 ((:) 3 (foldr (:) [] [])))

 ==> (:) 1 ((:) 2 ((:) 3 []))

 == 1 : (2 : (3 : []))

 == [1,2,3]

QUIZ
What is the most general type of foldr ?

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f b [] = b

foldr f b (x:xs) = f x (foldr f b xs)

(A) (a -> a -> a) -> a -> [a] -> a

(B) (a -> a -> b) -> a -> [a] -> b

(C) (a -> b -> a) -> b -> [a] -> b

(D) (a -> b -> b) -> b -> [a] -> b

(E) (b -> a -> b) -> b -> [a] -> b

Tail Recursive Fold
foldr f b [] = b

foldr f b (x:xs) = f x (foldr f b xs)

Is foldr tail recursive?

What about tail-recursive versions?
Let’s write tail-recursive sum !

sumTR :: [Int] -> Int

sumTR = ...

Lets run sumTR to see how it works

sumTR [1,2,3]

 ==> helper 0 [1,2,3]

 ==> helper 1 [2,3] -- 0 + 1 ==> 1

 ==> helper 3 [3] -- 1 + 2 ==> 3

 ==> helper 6 [] -- 3 + 3 ==> 6

 ==> 6

Note: helper directly returns the result of recursive call!

Let’s write tail-recursive cat !

catTR :: [String] -> String

catTR = ...

Lets run catTR to see how it works

catTR ["carne", "asada", "torta"]

 ==> helper "" ["carne", "asada", "torta"]

 ==> helper "carne" ["asada", "torta"]

 ==> helper "carneasada" ["torta"]

 ==> helper "carneasadatorta" []

 ==> "carneasadatorta"

Note: helper directly returns the result of recursive call!

Can you spot the pattern?
-- sumTR

foo xs = helper 0 xs

 where

 helper acc [] = acc

 helper acc (x:xs) = helper (acc + x) xs

-- catTR

foo xs = helper "" xs

 where

 helper acc [] = acc

 helper acc (x:xs) = helper (acc ++ x) xs

pattern = ...

The “fold-left” pattern

The foldl Pattern

General Pattern

Use a helper function with an extra accumulator argument

To compute new accumulator, combine current accumulator with the head using

some binary operation

foldl f b xs = helper b xs

 where

 helper acc [] = acc

 helper acc (x:xs) = helper (f acc x) xs

Let’s refactor sumTR and catTR :

sumTR = foldl

catTR = foldl

Factor the tail-recursion out!

QUIZ
What does this evaluate to?

foldl f b xs = helper b xs

 where

 helper acc [] = acc

 helper acc (x:xs) = helper (f acc x) xs

quiz = foldl (\xs x -> x : xs) [] [1,2,3]

(A) Type error

(B) [1,2,3]

(C) [3,2,1]

(D) [[3],[2],[1]]

a Int Int
b Int

aff
Int

EEEE.si It

I

y.TT

a ca b

Gf car on a3 s

I

1 en

een for

(E) [[1],[2],[3]]

foldl f b (x1: x2: x3 : [])

 ==> helper b (x1: x2: x3 : [])

 ==> helper (f x1 b) (x2: x3 : [])

 ==> helper (f x2 (f x1 b)) (x3 : [])

 ==> helper (f x3 (f x2 (f x1 b))) []

 ==> (x3 : (x2 : (x1 : [])))

The “fold-left” pattern
foldl f b [x1, x2, x3, x4]

 ==> helper b [x1, x2, x3, x4]

 ==> helper (f b x1) [x2, x3, x4]

 ==> helper (f (f b x1) x2) [x3, x4]

 ==> helper (f (f (f b x1) x2) x3) [x4]

 ==> helper (f (f (f (f b x1) x2) x3) x4) []

 ==> (f (f (f (f b x1) x2) x3) x4)

Accumulate the values from the left

For example:

foldl (+) 0 [1, 2, 3, 4]

 ==> helper 0 [1, 2, 3, 4]

 ==> helper (0 + 1) [2, 3, 4]

 ==> helper ((0 + 1) + 2) [3, 4]

 ==> helper (((0 + 1) + 2) + 3) [4]

 ==> helper ((((0 + 1) + 2) + 3) + 4) []

 ==> ((((0 + 1) + 2) + 3) + 4)

Left vs. Right
foldl f b [x1, x2, x3] ==> f (f (f b x1) x2) x3 -- Left

foldr f b [x1, x2, x3] ==> f x1 (f x2 (f x3 b)) -- Right

For example:

foldl (+) 0 [1, 2, 3] ==> ((0 + 1) + 2) + 3 -- Left

foldr (+) 0 [1, 2, 3] ==> 1 + (2 + (3 + 0)) -- Right

Di"erent types!

foldl :: (b -> a -> b) -> b -> [a] -> b -- Left

foldr :: (a -> b -> b) -> b -> [a] -> b -- Right

Higher Order Functions
Iteration patterns over collections:

Filter values in a collection given a predicate

Map (iterate) a given transformation over a collection

Fold (reduce) a collection into a value, given a binary operation to combine results

HOFs can be put into libraries to enable modularity

Data structure library implements map , filter , fold for its collections

generic e!cient implementation

generic optimizations: map f (map g xs) --> map (f.g) xs

Data structure clients use HOFs with specific operations

no need to know the implementation of the collection

Crucial foundation of

“big data” revolution e.g. MapReduce, Spark, TensorFlow

“web programming” revolution e.g. Jquery, Angular, React

Generated by Hakyll, template by Armin Ronacher, suggest improvements here.

INV

E

HOF

b

op a b b

http://jaspervdj.be/hakyll
http://lucumr.pocoo.org/
https://github.com/ucsd-progsys/liquidhaskell-blog/

