cse130

Calendar Contact Grades Lectures Assignments

Plan for this week

Last week:
o user-defined data types
o manipulating data-types with pattern matching and recursion

e how to make recursive functions more efficient with tail recursion

rf
i

ii‘i‘xy;.é '

The long arc of history
Pattern matching is a very old PL idea ...
e Variants of LISP from 1970 by Fred McBride
.. but will finally be added to Python 3.10 . (20 20)

o https://www.python.org/dev/peps/pep-0622/

def make_point_3d(pt):
match pt:
case (x, y):
return Point3d(x, y, 0)
case (x, y, z):
return Point3d(x, vy, z)
case Point2d(x, y):
return Point3d(x, y, 0)
case Point3d(_, _, _):
return pt
case _
raise TypeError("not a point we support")

Plan for this week

Last week:

e user-defined data types

o manipulating data-types with pattern matching and recursion

o how to make recursive functions more efficient with tail recursion
This week:

e code reuse with higher-order functions (HOFs)

e some useful HOFs: map, filter,and fold

Recursion is good...

e Recursive code mirrors recursive data

o Base constructor -> Base case
o Inductive constructor -> Inductive case (with recursive call)

e But it can get kinda repetitive!

-
‘QQ:

Example: evens)
Let’s write a function evens : \j/ 8 jh\‘ P 9

-- evens [] == 00
-- evens [1,2,3,4] ==> [2,4]

evens :: [Int] -> [Int] DU'\/\T

evens [] = ...

evens (Xx:xs)

Example: four-letter words

Let’s write a function fourChars:

-- fourChars [] ==> []
-- fourChars ["i", "must","do", "work"] ==> ["must", "work"]

fourChars :: [String] -> [String]

fourChars [] = ...
fourChars (x:xs) = ...

Yikes! Most Code is the Same!

Lets rename the functions to foo:

foo [] = [1
foo (x:xs)
| x mod 2 == = x : foo xs
| otherwise = foo xs
foo [] =[]
foo (x:xs)
| length x == 4 = x : foo xs
| otherwise = foo xs

Only difference is condition

e x mod 2 == 0 vs length x == 4

Moral of the day

D.R.Y. Don’t Repeat Yourself!

Can we
o reuse the general pattern and

o plug-in the custom condition?

Higher-Order Functions

General Pattern

e expressed as a higher-order function
o takes plugin operations as arguments

Specific Operation

e passed in as an argument to the HOF

The “filter” pattern

The filter Pattern
General Pattern

e HOF filter
e Recursively traverse list and pick out elements that satisfy a predicate

Specific Operations

e Predicates isEven and isFour

evens [] = 1[I fourChars [] =[]
evens (x:xs) fourChars (x:xs)
| x "mod” 2 == 0 = x : evens Xs | length x == 4 = x : fourChars xs
| otherwise = evens xs | otherwise = fourChars xs
filter f [] = [l
filter f (x:xs)
| f x = x : filter f xs
| otherwise = filter f xs

filter f [] = []
filter f (x:xs)
| £ x = x : filter f xs
| otherwise = filter f xs
evens = filter isEven fourChars = filter isFour
where where
isEven x = x ‘mod® 2 == 0 isFour x = length x ==
filter instances
Avoid duplicating code!

QUIZ: What is the type of fi1lter?

-- evens [1,2,3,4] ==> [2,4]
evens :: [Int] -> [Int]

evens xs {5 filter\)i,sEven XS

where
isEven :: Int -> Bool
isEven x = x ‘mod’ 2 ==

-- fourChars ["i", "must","do", "work"] ==> ["must", "work"]
fourChars :: [String] -> [String]
fourChars xs @isFour Xs

where -

isFour :: String -> Bool
isFour x = Tlength x ==

So what’s the type of filter ?

{- A -} filter :: (Int -> Bool) -> [Int] -> [Int]

{- B -} filter :: (String -> Bool) -> [String] -> [String]
{- C -} filter :: (a -> Bool) -> [a] -> [a] //

N -
T-D -} filter :: (a -> Bool) -> [a] -> [Bool]

—

{- E -} filter :: (a -> b) -> [a] -> [b]

Type of filter

-- evens [1,2,3,4] ==> [2,4]
evens :: [Int] -> [Int]
evens xs = filter isEven xs

where
isEven :: Int -> Bool
isEven x = x ‘mod’ 2 ==

-- fourChars ["i", "must", "do", "work"] ==> ["must", "work"]
fourChars :: [String] -> [String]
fourChars xs = filter isFour xs

where
isFour :: String -> Bool
isFour x = Tlength x ==

For any type a

e Input apredicate a -> Bool and collection [a]

e QOutput a (smaller) collection [a]
filter :: (a -> Bool) -> [a] -> [a]
filter does not care what the list elements are
e aslong as the predicate can handle them

filter is polymorphic (generic) in the type of list elements

Example: ALL CAPS!

Lets write a function shout :

-- shout [] ==>[]
-- shout [Ih!J IeI,VZI’VZI’IOI-] ==> ['HI,'E’, ILVJ ILIJ 101]

shout :: [Char] -> [Char]
shout [] = ...
shout (x:xs) = ...

Example: squares

Lets write a function squares:

-- squares [] ==> []
-- squares [1,2,3,4] ==> [1,4,9,16]

squares :: [Int] -> [Int]
squares [] = ...

squares (x:Xs)

Yikes, Most Code is the Same

Lets rename the functions to foo:

-- shout

foo [] []

foo (x:xs) = toUpper x : foo xs

-- squares
foo [] =[]
foo (x:xs) = (x * x) : foo xs

Lets refactor into the common pattern

pattern = ...

The “map” pattern

shout [] [1 squares [] [1
shout (x:xs) = toUpper x : shout xs squares (x:xs) = (xkx)

1 squares Xs

|
—
—

map f []
map f (x:xs)

f x : map f xs

The map Pattern
General Pattern

e HOF map
e Apply a transformation f to each element of a list

Specific Operations

e Transformations toUpper and \x -> x * x

map f [] [1
map f (x:xs) = f x : map f xs

Lets refactor shout and squares

shout = map b u,;,w/

squares = map <\ =2 A % X)

(]

f x : map f xs

map f []
map f (x:xs)

Links

shout = map (\x -> toUpper x) squares = map (\x => x*x)

map instances

by - [Clar ~ [ht]

ordss= map or A«

QUIZ

What is the type of map ?

map f [] []
map f (x:xs) = f x : map f xs

(A) (Char -> Char) -> [Char] -> [Char] /X

e

(B) (Int -> Int) -> [Int] -> [Int]
© (3 ->a) ->[a] -> [a] ¢

(D) (2 -> b) -> [a] > [b] |

(E) (@ -> b) -> [c] -> [d]

-- For any types ‘a’ and b

-- if you give me a transformation from ‘a’ to ‘b’
-- and a list of ‘a’s,

-- I'll give you back a list of 'b's

map :: (a -> b) -> [a] -> [b]

Type says it all!

o The only meaningful thing a function of this type can do is apply its first argument

to elements of the list

e Hoogle it!

Things to try at home:

e can you write a function map' :: (a -> b) -> [a] -> [b] whose behavior is

different from map ?

e canyou write a function map' :: (a -> b) -> [a] -> [b] suchthat map' f xs

returns a list whose elements are not in map f xs?

Piazza

Canvas

https://personal.cis.strath.ac.uk/conor.mcbride/FVMcB-PhD.pdf
https://ucsd-cse130.github.io/wi24/index.html

QUIZ

What is the value of quiz? L = [fat, ht)

map i: (a o> b) o> [a] - tb]"j b = Ink

quiz = map (‘\(x, y) ->x +y)1, 2, 3]~
mp—re) rr——

-

@) [2, 4, 6] 9 h

CoeN \

(C) Syntax Error - .
/) |t}
| /(D) Type Error .

(E) None of the above

Don't Repeat Yourself

Benefits of factoring code with HOFs:
e Reuse iteration pattern
o think in terms of standard patterns
o less to write
o easier to communicate

o Avoid bugs due to repetition

Recall: length of a list

- len [] ==> 0

- len ["carne”, "asada"] ==> 2
len :: [a] -> Int
len [] =0

len (x:xs) = 1 + len xs

Recall: summing a list

- sum [] ==> 0

- sum [1,2,3] ==> 6
sum :: [Int] -> Int
sum [] =0
sum (X:XS) = X + sum Xs

Example: string concatenation

Let’s write a function cat:

- cat [] ==>""

- cat ["carne","asada", "torta"] ==> "carneasadatorta"
cat :: [String] -> String

cat []

cat (x:xs)

Can you spot the pattern?

- len
foo [] =0
foo (x:xs) = 1 + foo xs

== sum

foo [] =0

foo (x:xs) = x + foo xs
- cat

.Foo [] = nn
foo (x:xs) = x ++ foo xs

pattern = ...

The “fold-right” pattern

len []
len (x:xs)

0 sum [] 0 cat []

1 + len xs || sum (x:xs)

X + sum xs || cat (x:xs)

X ++ sum XS

foldr f b [] =b
foldr f b (x:xs) = f

x (foldr f b xs

)

The foldr Pattern
General Pattern

o Recurse on tail
o Combine result with the head using some binary operation

foldr f b []
foldr f b (x:xs)

b
f x (foldr f b xs)

Let’s refactor sum, len and cat:

sum = foldr ...

cat = foldr ...

len = foldr ...

FactofThQJB¢UISkﬁrQyﬂ
(rﬂ‘_") {)—» b) -3 b 3y f{‘“-] — b
'\ “' > =2/ b) f), > [X o - '('/.
foldr f b [] = b

foldr f b (x:xs)

f x (foldr f b

XS)

F 2

len = foldr (A\x n => 1 + n) 0
sum = foldr (\x n => x + n) 0
cat = foldr (\x s => x ++ n) “”

foldr instances

You can write it more clearly as

sum

foldr (+) 0

cat = foldr (++) ""

The “fold-right” pattern £y~ ™\ f\ AR VR
a

‘0 (g ‘o (a, o (a, ‘o

foldr f b [al1, a2, a3, a4] f
==> f al (foldr f b [a2, a3, a4]) \\
al (f a2 (foldr f b [a3, a4])) \
a1l (f a2 (f a3 (foldr f b [a4]))) \
a1l (f a2 (f a3 (f a4 (foldr f b [1))))
al (f a2 (f a3 (f a_4/b)))
\

==> f
==> f
==> f
==> f

Accumulate the values from the right

For example:

foldr (+) 0 [1, 2, 3, 4]
==> 1 + (foldr (+) 0 [2, 3, 4])
==> 1 + (2 + (foldr (+) 0 [3, 41))
==> 1+ (2 + (3 + (foldr (+) 0 [4])))
==> 1+ (2 + (3 + (4 + (foldr (+) 0 [I)))
==>{-1 +(2+ 3+ (4+ 0)))1

!

QUIZ

What does this evaluate to?

foldr f b [] b
foldr f b (x:xs) = f x (foldr f b xs)

o 3 LY

quiz = foldr (\x v -> x : v) [] [1,2,3]

e v
(A) Type error o . o
> L A e__l)\ (- {u.f(,f o l V (&2 L

\

(®) [1,2,3] 4 _ , |
l Y - L\(‘t‘ (“‘1 .L“(\V,,'ﬂ.l o L3

(© 0.2 |

5))

{3:L

\—> 1 op (2 op* (37er' (LT))

© ((30,(20,0

(E)[[l],m,[z]]_& / 12 L'%J_)’

foldr

==>

) [1[1,2,3]
) 1 (foldr (:) [1 [2, 3D)
==> (:) 1 ((:) 2 (foldr (:) [1 [31))
==> (1) 1 ((:) 2 ((:) 3 (foldr (:) [1[DN
) 1 () 2 () 301N
(22 (G [N
= [1,2,3]

==>

oA AN A A

lon 7= O

loun (x4) = 1 + uu X8

lou = foldr ‘.._??-4 2
(1#)
(\x=itx)

QUIZ

What is the most general type of foldr?

foldr :: (@ ->b ->b) ->b ->[a] ->b
foldr f b [] b
foldr f b (x:xs) = f x (foldr f b xs)

(A) (a -> a ->a) ->a -> [a] -> a
(B) (@ ->a->b) ->a->[a] ->b
(C(a->b->a) ->b ->[a] ->b
(D) (a ->b ->b) ->b ->[a] -> b

(E) (b ->a ->b) ->b ->[a] ->b

Tail Recursive Fold

foldr f b [] b
foldr f b (x:xs) = f x (foldr f b xs)

Is foldr tail recursive?

What about tail-recursive versions?

Let’s write tail-recursive sum!

sumTR :: [Int] -> Int
sumTR = ...

Lets run sumTR to see how it works

sumTR [1,2,3]
==> helper 0 [1,2,3]
==> helper 1 [2,3] -0+ 1 ==>1
==> helper 3 [3] -1+ 2==>3
==> helper 6 [] -- 3+ 3==>6

==> 6

Note: helper directly returns the result of recursive call!

Let’s write tail-recursive cat!

catTR :: [String] -> String
catTR = ...

Lets run catTR to see how it works
catTR "carne", "asada", "torta"]

==> helper "carne", "asada", "torta"]

==> helper "carne" ["asada", "torta"]
==> helper "carneasada" ["torta"]
==> helper "carneasadatorta" [1]

==> "carneasadatorta"

Note: helper directly returns the result of recursive call!

Can you spot the pattern?

- sumTR
foo xs = helper 0 xs
where
helper acc [] = acc
helper acc (x:xs) = helper (acc + x) xs

- catTR
foo xs = helper

where
helper acc [] = acc
helper acc (x:xs) = helper (acc ++ X) Xs

pattern = ...

The “fold-left” pattern

§)))

sum Xs = helper 0 xs cat xs
where where
helper acc [] = acc helper acc []

= helper “”

= acc

helper acc (x:xs) = helper (acc + x) xs helper acc (x:xs) = helper (acc ++ x) xs

XS

foldl f b xs = helper b xs
where
helper acc [] = acc
helper acc (x:xs) = helper (f acc x) xs

The foldl Pattern
General Pattern

e Use a helper function with an extra accumulator argument

e To compute new accumulator, combine current accumulator with the head using

some binary operation
foldl f b xs = helper b xs
where
helper acc [] = acc

helper acc (x:xs) = helper (f acc x) xs

Let’s refactor sumTR and catTR:

sumTR = foldl ...

catTR = foldl ...

Factor the tail-recursion out!

QUIZ

What does this evaluate to?

foldl f b xs = helper b xs
where
helper acc [] = acc

helper acc (x:xs) = helper (f acc x) xs

quiz = foldl (\xs x -> x : xs) [] [1,2,3]

(A) Type error
(B) [1,2,3]

©) [3,2,1]

(D) [[31,[21,[1]]

/

b)>)

(E) [[11,[2],[31]

) N
foldl f b (x1: x2: x3 : []) ’
==> helper b (x1: x2: x3 : [])
==> helper (f x1 b) (x2: x3 : [])
==> helper (f x2 (f x1 b)) (x3 : [])
==> helper (f x3 (f x2 (f x1 b))) []
=> (x3: (x2: x1:[D)

R

The “fold-left” pattern

foldl f b [x1, x2, x3, x4]
==> helper b [x1, x2, x3, x4]
==> helper (f b x1) [x2, x3, x4]
==> helper (f (f b x1) x2) [x3, x4]
==> helper (f (f (f b x1) x2) x3) [x4]

==> helper (f (f (f (f b x1) x2) x3) x4) []
=> (f (f (f (f b x'1) x2) x3) x4)

Accumulate the values from the left

For example:

foldl (+) O [1, 2, 3, 4]
==> helper 0 [1, 2, 3, 4]
==> helper (0 + 1) [2, 3, 4]
==> helper ((0 + 1) + 2) [3, 4]
==> helper (((0 + 1) + 2) + 3) [4]

==> helper ((((0 + 1) + 2) + 3) + 4) []
==> ((((0 + 1) + 2) + 3) + 4) -

Left vs. Right

foldl f b [x1, x2, x3] ==> f (f (f b x1) x2) x3 -- Left

foldr f b [x1, x2, x3] ==> f x1 (f x2 (f x3 b)) -- Right
For example:

foldl (+) 0 [1, 2, 3] ==> ((0 + 1) + 2) + 3 -- Left

foldr (+) 0 [1, 2, 3] ==>1+ (2 + (3 + 0)) -- Right
Different types!

foldl :: (b ->a ->b) ->b ->[a] ->b -- Left

foldr :: (@ ->b ->b) ->b ->[a] ->b -- Right

Higher Order Functions (H0F)
Iteration patterns over collections:

, . o . a—~> beol
o Filter values in a collection given a predicate
r———

Je Map (iterate) a given transformationkover acollection “ b
L- Fold (reduce) a collection into a value, given a binary operation to combine results
' op’ [a—=b->{)
(N
HOFs can be put into libraries to enable modularity
e Data structure library implements map, filter, fold for its collections
o generic efficient implementation
o generic optimizations: map f (map g xs) --> map (f.g) xs
o Data structure clients use HOFs with specific operations

o no need to know the implementation of the collection

P

Crucial foundation of 2004

ey

o “big data” revolution e.g.;'IMap}?educ?(,ISpark, TensorFlow

o ‘“‘web programming” revolution e.g. {query,,Angular, React
)

Generated by Hakyll, template by Armin Ronacher, suggest improvements here.

http://jaspervdj.be/hakyll
http://lucumr.pocoo.org/
https://github.com/ucsd-progsys/liquidhaskell-blog/

