
Haskell Crash Course Part I

From the Lambda Calculus to Haskell

What is Haskell?

A typed, lazy, purely functional programming language

Haskell = λ-calculus ++

better syntax

types

built-in features

booleans, numbers, characters

records (tuples)

lists

recursion

…

Programming in Haskell
Computation by Calculation

Substituting equals by equals

Computation via Substituting Equals by
Equals

    (1 + 3) * (4 + 5)

                        -- subst 1 + 3 = 4

==>       4 * (4 + 5)

                        -- subst 4 + 5 = 9

==>       4 * 9

                        -- subst 4 * 9 = 36

==>       36

Computation via Substituting Equals by
Equals
Equality-Substitution enables Abstraction via Pattern Recognition

Abstraction via Pattern Recognition
Repeated Expressions

                31 * (42 + 56)

                70 * (12 + 95)

                90 * (68 + 12)

Recognize Pattern as λ-function

pat = \x y z -> x  * ( y + z )

Equivalent Haskell Definition

pat   x y z =  x  * ( y + z )

Function Call is Pattern Instance

pat 31 42 56 =*> 31 * (42 + 56) =*> 31 * 98  =*> 3038

pat 70 12 95 =*> 70 * (12 + 95) =*> 70 * 107 =*> 7490

pat 90 68 12 =*> 90 * (68 + 12) =*> 90 * 80  =*> 7200

Key Idea: Computation is substitute equals by equals.

Programming in Haskell
Substitute Equals by Equals

Thats it! (Do not think of registers, stacks, frames etc.)

Elements of Haskell

Core program element is an expression

Every valid expression has a type (determined at compile-time)

Every valid expression reduces to a value (computed at run-time)

Ill-typed* expressions are rejected at compile-time before execution

like in Java

not like λ-calculus or Python …

weirdo = 1 0     -- rejected by GHC

Why are types good?
Helps with program design

Types are contracts (ignore ill-typed inputs!)

Catches errors early

Allows compiler to generate code

Enables compiler optimizations

The Haskell Eco-System
Batch compiler: ghc  Compile and run large programs

Interactive Shell ghci  Shell to interactively run small programs online

Build Tool stack  Build tool to manage libraries etc.

Interactive Shell: ghci
$ stack ghci

:load file.hs

:type expression

:info variable

A Haskell Source File
A sequence of top-level definitions x1 , x2 , …

Each has type type_1 , type_2 , …

Each defined by expression expr_1 , expr_2 , …

x_1 :: type_1

x_1 = expr_1

x_2 :: type_2

x_2 = expr_2

.

.

cse130
 

https://repl.it/languages/haskell
https://ucsd-cse130.github.io/wi25/index.html


.

.

Basic Types
ex1 :: Int

ex1 = 31 * (42 + 56)   -- this is a comment

ex2 :: Double

ex2 = 3 * (4.2 + 5.6)  -- arithmetic operators "overloaded"

ex3 :: Char

ex3 = 'a'              -- 'a', 'b', 'c', etc. built-in `Char` value

s

ex4 :: Bool

ex4 = True             -- True, False are builtin Bool values

ex5 :: Bool

ex5 = False

QUIZ: Basic Operations
ex6 :: Int

ex6 = 4 + 5

ex7 :: Int

ex7 = 4 * 5

ex8 :: Bool

ex8 = 5 > 4

quiz :: ???

quiz = if ex8 then ex6 else ex7

What is the type of quiz ?

A. Int

B. Bool

C. Error!

QUIZ: Basic Operations
ex6 :: Int

ex6 = 4 + 5

ex7 :: Int

ex7 = 4 * 5

ex8 :: Bool

ex8 = 5 > 4

quiz :: ???

quiz = if ex8 then ex6 else ex7

What is the value of quiz ?

A. 9

B. 20

C. Other!

Function Types
In Haskell, a function is a value that has a type

A -> B

A function that

takes input of type A

returns output of type B

For example

isPos :: Int -> Bool

isPos = \n -> (x > 0)

Define function-expressions using \  like in λ-calculus!

But Haskell also allows us to put the parameter on the left

isPos :: Int -> Bool

isPos n = (x > 0)

(Meaning is identical to above definition with \n -> ... )

Multiple Argument Functions
A function that

takes three inputs A1 , A2  and A3

returns one output B  has the type

A1 -> A2 -> A3 -> B

For example

pat :: Int -> Int -> Int -> Int

pat = \x y z -> x * (y + z)

which we can write with the params on the left as

pat :: Int -> Int -> Int -> Int

pat x y z = x * (y + z)

QUIZ
What is the type of quiz  ?

quiz :: ???

quiz x y = (x + y) > 0

A. Int -> Int

B. Int -> Bool

C. Int -> Int -> Int

D. Int -> Int -> Bool

E. (Int, Int) -> Bool

Function Calls
A function call is exactly like in the λ-calculus

e1 e2

where e1  is a function and e2  is the argument. For example

>>> isPos 12

True

>>> isPos (0 - 5)

False

Multiple Argument Calls
With multiple arguments, just pass them in one by one, e.g.

(((e e1) e2) e3)

For example

>>> pat 31 42 56

3038

EXERCISE
Write a function myMax  that returns the maximum of two inputs

myMax :: Int -> Int -> Int

myMax = ???

When you are done you should see the following behavior:

>>> myMax 10 20

20

>>> myMax 100 5

100

EXERCISE
Write a function sumTo  such that sumTo n  evaluates to 0 + 1 + 2 + ... + n

sumTo :: Int -> Int

sumTo n = ???



When you are done you should see the following behavior:

>>> sumTo 3

6

>>> sumTo 4

10

>>> sumTo 5

15

How to Return Multiple Outputs?

Tuples
A type for packing n  di!erent kinds of values into a single “struct”

(T1,..., Tn)

For example

tup1 :: ???

tup1 = ('a', 5)

tup2 :: (Char, Double, Int)

tup2 = ('a', 5.2, 7)

QUIZ
What is the type ???  of tup3 ?

tup3 :: ???

tup3 = ((7, 5.2), True)

A. (Int, Bool)

B. (Int, Double, Bool)

C. (Int, (Double, Bool))

D. ((Int, Double), Bool)

E. (Tuple, Bool)

Extracting Values from Tuples
We can create a tuple of three values e1 , e2 , and e3  …

tup = (e1, e2, e3)

… but how to extract the values from this tuple?

Pattern Matching via case-of  expressions

fst3 :: (t1, t2, t3) -> t1

fst3 t = case t of

           (x1, x2, x3) -> x1

snd3 :: (t1, t2, t3) -> t2

snd3 t = case t of

           (x1, x2, x3) -> x2

thd3 :: (t1, t2, t3) -> t3

thd3 t = case t of

           (x1, x2, x3) -> x3

QUIZ
What is the value of quiz  defined as

tup2 :: (Char, Double, Int)

tup2 = ('a', 5.2, 7)

snd3 :: (t1, t2, t3) -> t2

snd3 t = case t of

           (x1, x2, x3) -> x2

quiz = snd3 tup2

A. 'a'

B. 5.2

C. 7

D. ('a', 5.2)

E. (5.2, 7)

Lists
Unbounded Sequence of values of type T

[T]

For example

chars :: [Char]

chars = ['a', 'b', 'c']

ints :: [Int]

ints = [1, 3, 5, 7]

pairs :: [(Int, Bool)]

pairs = [(1,True), (2,False)]

QUIZ
What is the type of things  defined as

things :: ???

things = [ [1], [2, 3], [4, 5, 6] ]

A. [Int]

B. ([Int], [Int], [Int])

C. [(Int, Int, Int)]

D. [[Int]]

E. List

List’s Values Must Have The SAME Type!
The type [T]  denotes an unbounded sequence of values of type T

Suppose you have a list

oops = [1, 2, 'c']

There is no T  that we can use

As last element is not Int

First two elements are not Char !

Result: Mysterious Type Error!

Constructing Lists
There are two ways to construct lists

    []     -- creates an empty list

    h:t    -- creates a list with "head" 'h' and "tail" t

For example

>>> 3 : []

[3]

>>> 2 : (3 : [])

[2, 3]

>>> 1 : (2 : (3 : []))

[1, 2, 3]

Cons Operator :  is Right Associative

x1 : x2 : x3 : x4 : t  means x1 : (x2 : (x3 : (x4 : t)))

So we can just avoid the parentheses.

Syntactic Sugar

Haskell lets you write [x1, x2, x3, x4]  instead of x1 : x2 : x3 : x4 : []

Functions Producing Lists
Lets write a function copy3  that

takes an input x  and

returns a list with three copies of x

copy3 :: ???

copy3 x = ???



When you are done, you should see the following

>>> copy3 5

[5, 5, 5]

>>> copy3 "cat"

["cat", "cat", "cat"]

Lets write some Functions
A Recipe

Step 1: Write some tests

Step 2: Write the type

Step 3: Write the code

PRACTICE: Clone
Write a function clone  such that clone n x  returns a list with n  copies of x .

1. Tests

When you are done you should see the following behavior

>>> clone 0 "cat"

[]

>>> clone 1 "cat"

["cat"]

>>> clone 2 "cat"

["cat", "cat"]

>>> clone 3 "cat"

["cat", "cat", "cat"]

>>> clone 3 100

[100, 100, 100]

2. Types

clone :: ???

3. Code

clone n x = ???

How does clone  execute?
(Substituting equals-by-equals!)

clone 3 100

  =*> ???

EXERCISE: Range
Write a function range  such that range i j  returns the list of values [i, i+1,

..., j]

range :: ???

range i j = ???

1. Tests

>>> range 4 3

[]

>>> range 3 3

[3]

>>> range 2 3

[2, 3]

>>> range 1 3

[1, 2, 3]

>>> range 0 3

[0, 1, 2, 3]

2. Type

range :: ???

3. Code

range = ???

Functions Consuming Lists
So far: how to produce lists.

Next how to consume lists!

EXERCISE
Lets write a function firstElem  such that firstElem xs  returns the first element

xs  if it is a non-empty list, and 0  otherwise.

HINT: How to extract values from a list?

1. Tests

When you are done you should see the following behavior:

>>> firstElem []

0

>>> firstElem [10, 20, 30]

10

>>> firstElem [5, 6, 7, 8]

5

2. Type

firstElem :: ???

3. Code

firstElem = ???

QUIZ
Suppose we have the following mystery  function

mystery :: [a] -> Int

mystery l = case l of

              []     -> 0

              (x:xs) -> 1 + mystery xs

What does mystery [10, 20, 30]  evaluate to?

A. 10

B. 20

C. 30

D. 3

E. 0

EXERCISE: Summing a List
Write a function sumList  such that sumList [x1, ..., xn]  returns x1 + ...

+ xn

1. Tests

When you are done you should get the following behavior:

>>> sumList []

0

>>> sumlist [3]

3

>>> sumlist [2, 3]

5

>>> sumlist [1, 2, 3]

6

2. Type

sumList :: [Int] -> Int

https://www.htdp.org/


3. Code

sumList = ???

Functions on lists: take
Let’s write a function to take  first n  elements of a list xs .

1. Tests

-- >>> ???

2. Type

take :: ???

Some useful library functions
-- | Length of the list

length :: [t] -> Int

-- | Append two lists

(++) :: [t] -> [t] -> [t]

-- | Are two lists equal?

(==) :: [t] -> [t] -> Bool

You can search for library functions on Hoogle!

**3. Code**

```haskell

take = ???

Some useful library functions
-- | Length of the list

length :: [t] -> Int

-- | Append two lists

(++) :: [t] -> [t] -> [t]

-- | Are two lists equal?

(==) :: [t] -> [t] -> Bool

You can search for library functions on Hoogle!

Recap

Core program element is an expression

Every valid expression has a type (determined at compile-time)

Every valid expression reduces to a value (computed at run-time)

Execution

Basic values & operators

Execution / Function Calls just substitute equals by equals

Pack data into tuples & lists

Unpack data via pattern-matching

   

Generated by Hakyll, template by Armin Ronacher, suggest improvements here.

https://www.haskell.org/hoogle/
https://www.haskell.org/hoogle/
http://jaspervdj.be/hakyll
http://lucumr.pocoo.org/
https://github.com/ucsd-progsys/liquidhaskell-blog/

