
Datatypes and Recursion

Plan for this week
Last week:

built-in data types

base types, tuples, lists (and strings)

writing functions using pattern matching and recursion

This week:

user-defined data types

and how to manipulate them using pattern matching and recursion

more details about recursion

Representing complex data
Previously, we’ve seen:

base types: Bool , Int , Integer , Float

some ways to build up types: given types T1, T2

functions: T1 -> T2

tuples: (T1, T2)

lists: [T1]

Next: Algebraic Data Types:

A single, powerful way to type complex data

Lets you define your own data types

Tuples and lists are special cases

Building data types

Three key ways to build complex types/values:

1. Product types (each-of): a value of T contains a value of T1 and a value of T2

2. Sum types (one-of): a value of T contains a value of T1 or a value of T2

3. Recursive types: a value of T contains a sub-value of the same type T

Product types
Tuples can do the job but there are two problems…

deadlineDate :: (Int, Int, Int)

deadlineDate = (1, 28, 2022)

deadlineTime :: (Int, Int, Int)

deadlineTime = (11, 59, 59)

-- | Deadline date extended by one day

extendDate :: (Int, Int, Int) -> (Int, Int, Int)

extendDate = ...

Can you spot them?

1. Verbose and unreadable
A type synonym for T : a name that can be used interchangeably with T

type Date = (Int, Int, Int)

type Time = (Int, Int, Int)

deadlineDate :: Date

deadlineDate = (1, 28, 2021)

deadlineTime :: Time

deadlineTime = (11, 59, 59)

-- | Deadline date extended by one day

extendDate :: Date -> Date

extendDate = ...

2. Unsafe
We want to catch this error at compile time!!!

extension deadlineTime

Solution: construct two di!erent datatypes

data Date = Date Int Int Int

data Time = Time Int Int Int

 ^ ^---^---^---- parameter types

 `---------------- constructor name

deadlineDate :: Date

deadlineDate = Date 2 7 2020

deadlineTime :: Time

deadlineTime = Time 11 59 59

Record syntax
Haskell’s record syntax allows you to name the constructor parameters:

Instead of

data Date = Date Int Int Int

you can write:

data Date = Date

 { month :: Int

 , day :: Int

 , year :: Int

 }

then you can do:

deadlineDate = Date 2 4 2019

deadlineMonth = month deadlineDate -- use field name as a funct

ion

Building data types

Three key ways to build complex types/values:

1. Product types (each-of): a value of T contains a value of T1 and a value of T2

[done]

2. Sum types (one-of): a value of T contains a value of T1 or a value of T2

3. Recursive types: a value of T contains a sub-value of the same type T

Example: NanoMarkdown
Suppose I want to represent a text document with simple markup

Each paragraph is either:

plain text (String)

heading: level and text (Int and String)

list: ordered? and items (Bool and [String])

I want to store all paragraphs in a list

doc = [(1, "Notes from 130") -- Level 1 heading

 , "There are two types of languages:" -- Plain text

 , (True, ["those people complain about" -- Ordered list

 , "those no one uses"])

]

But this does not type check!!!

Sum Types
Solution: construct a new type for paragraphs that is a sum (one-of) the three

options!

Each paragraph is either:

plain text (String)

heading: level and text (Int and String)

Expression
run-time Value

compile-time

Type

cse130

https://ucsd-cse130.github.io/wi25/index.html

heading: level and text (Int and String)

list: ordered? and items (Bool and [String])

data Paragraph -- ^ THREE constructors, w/ different p

arameters

 = PText String -- ^ text: plain string

 | PHeading Int String -- ^ head: level and text (Int & Strin

g)

 | PList Bool [String] -- ^ list: ordered? & items (Bool & [St

ring])

QUIZ
data Paragraph

 = PText String

 | PHeading Int String

 | PList Bool [String]

What is the type of Text "Hey there!" ? i.e. How would GHCi reply to:

>:t (PText "Hey there!")

A. Syntax error

B. Type error

C. PText

D. String

E. Paragraph

Constructing datatypes
data T

 = C1 T11 ... T1k

 | C2 T21 ... T2l

 | ...

 | Cn Tn1 ... Tnm

T is the new datatype

C1 .. Cn are the constructors of T

A value of type T is

either C1 v1 .. vk with vi :: T1i

or C2 v1 .. vl with vi :: T2i

or …

or Cn v1 .. vm with vi :: Tni

You can think of a T value as a box:

either a box labeled C1 with values of types T11 .. T1k inside

or a box labeled C2 with values of types T21 .. T2l inside

or …

or a box labeled Cn with values of types Tn1 .. Tnm inside

One-of Types

Constructing datatypes: Paragraph
data Paragraph

 = PText String

 | PHeading Int String

 | PList Bool [String]

Apply a constructor = pack some values into a box (and label it)

PText "Hey there!"

put "Hey there!" in a box labeled PText

PHeading 1 "Introduction"

put 1 and "Introduction" in a box labeled PHeading

Boxes have di!erent labels but same type (Paragraph)

The Paragraph Type

with example values:

The Paragraph Type

QUIZ
data Paragraph

 = PText String

 | PHeading Int String

 | PList Bool [String]

What would GHCi say to

>:t [PHeading 1 "Introduction", PText "Hey there!"]

A. Syntax error

B. Type error

C. Paragraph

D. [Paragraph]

E. [String]

Example: NanoMD
data Paragraph

 = PText String

 | PHeading Int String

 | PList Bool [String]

Now I can create a document like so:

doc :: [Paragraph]

doc = [PHeading 1 "Notes from 130"

 , PText "There are two types of languages:"

 , PList True ["those people complain about"

 , "those no one uses"

])

]

Problem: How to Convert Documents to
HTML?
How to write a function

html :: Paragraph -> String

html p = ??? -- ^ depends on the kind of paragraph!

How to tell what’s in the box?

Look at the label!

Pattern matching
Pattern matching = looking at the label and extracting values from the box

we’ve seen it before

but now for arbitrary datatypes

html :: Paragraph -> String

html p = case p of

 PText str -> ... -- It's a plain text; str :: St

ring

 PHeading lvl str -> ... -- It's a heading; lvl :: In

t, str :: String

 PList ord items -> ... -- It's a list; ord :: Bo

ol, items :: [String]

or, we can pull the case-of to the “top” as

html :: Paragraph -> String

html (PText str) = ... -- It's a plain text; str :: String

html (PHeading lvl str) = ... -- It's a heading; lvl :: Int, st

r :: String

html (PList ord items) = ... -- It's a list; ord :: Bool, i

tems :: [String]

html :: Paragraph -> String

html (PText str) -- It's a plain text! Get string

 = unlines [open "p", str, close "p"]

html (PHeading lvl str) -- It's a heading! Get level and string

 = let htag = "h" ++ show lvl

 in unwords [open htag, str, close htag]

html (PList ord items) -- It's a list! Get ordered and items

 = let ltag = if ord then "ol" else "ul"

 litems = [unwords [open "li", i, close "li"] | i <- items]

 in unlines ([open ltag] ++ litems ++ [close ltag])

Dangers of pattern matching (1)
html :: Paragraph -> String

html (PText str) = ...

html (PList ord items) = ...

What would GHCi say to:

html (PHeading 1 "Introduction")

Dangers of pattern matching (2)
html :: Paragraph -> String

html (PText str) = unlines [open "p", str, close "p"]

html (PHeading lvl str) = ...

html (PHeading 0 str) = html (PHeading 1 str)

html (PList ord items) = ...

What would GHCi say to:

html (PHeading 0 "Introduction")

Dangers of pattern matching
Beware of missing and overlapped patterns

GHC warns you about overlapped patterns

GHC warns you about missing patterns when called with -W (use :set -W in

GHCi)

Pattern-Match Expression
Everything is an expression?

We’ve seen: pattern matching in equations

Actually, pattern-match is also an expression

html :: Paragraph -> String

html p = case p of

 PText str -> unlines [open "p", str, close "p"]

 PHeading lvl str -> ...

 PList ord items -> ...

The code we saw earlier was syntactic sugar

html (C1 x1 ...) = e1

html (C2 x2 ...) = e2

html (C3 x3 ...) = e3

is just for humans, internally represented as a case-of expression

html p = case p of

 (C1 x1 ...) -> e1

 (C2 x2 ...) -> e2

 (C3 x3 ...) -> e3

QUIZ
What is the type of

let p = Text "Hey there!"

in case p of

 PText str -> str

 PHeading lvl _ -> lvl

 PList ord _ -> ord

A. Syntax error

B. Type error

C. String

D. Paragraph

E. Paragraph -> String

Pattern matching expression: typing
The case expression

case e of

 pattern1 -> e1

 pattern2 -> e2

 ...

 patternN -> eN

has type T if

each e1 … eN has type T

e has some type D

each pattern1 … patternN is a valid pattern for D

i.e. a variable or a constructor of D applied to other patterns

The expression e is called the match scrutinee

QUIZ
What is the type of

let p = Text "Hey there!"

in case p of

 PText _ -> 1

 PHeading _ _ -> 2

 PList _ _ -> 3

A. Syntax error

B. Type error

C. Paragraph

D. Int

E. Paragraph -> Int

Building data types

Three key ways to build complex types/values:

1. Product types (each-of): a value of T contains a value of T1 and a value of T2

[done]

Cartesian product of two sets: v(T) = v(T1) × v(T2)

2. Sum types (one-of): a value of T contains a value of T1 or a value of T2

[done]

Union (sum) of two sets: v(T) = v(T1) ∪ v(T2)

3. Recursive types: a value of T contains a sub-value of the same type T

Recursive types
Let’s define natural numbers from scratch:

data Nat = ???

data Nat = Zero | Succ Nat

A Nat value is:

either an empty box labeled Zero

or a box labeled Succ with another Nat in it!

Some Nat values:

Zero -- 0

Succ Zero -- 1

Succ (Succ Zero) -- 2

Succ (Succ (Succ Zero)) -- 3

...

Functions on recursive types
Recursive code mirrors recursive data

1. Recursive type as a parameter
data Nat = Zero -- base constructor

 | Succ Nat -- inductive constructor

Step 1: add a pattern per constructor

toInt :: Nat -> Int

toInt Zero = ... -- base case

toInt (Succ n) = ... -- inductive case

 -- (recursive call goes here)

Step 2: fill in base case:

toInt :: Nat -> Int

toInt Zero = 0 -- base case

toInt (Succ n) = ... -- inductive case

 -- (recursive call goes here)

Step 2: fill in inductive case using a recursive call:

toInt :: Nat -> Int

toInt Zero = 0 -- base case

toInt (Succ n) = 1 + toInt n -- inductive case

QUIZ
What does this evaluate to?

let foo i = if i <= 0 then Zero else Succ (foo (i - 1))

in foo 2

A. Syntax error

B. Type error

C. 2

D. Succ Zero

E. Succ (Succ Zero)

2. Recursive type as a result
data Nat = Zero -- base constructor

 | Succ Nat -- inductive constructor

fromInt :: Int -> Nat

fromInt n

 | n <= 0 = Zero -- base case

 | otherwise = Succ (fromInt (n - 1)) -- inductive case

 -- (recursive call goes her

e)

EXERCISE: Putting the two together
data Nat = Zero -- base constructor

 | Succ Nat -- inductive constructor

add :: Nat -> Nat -> Nat

add n m = ???

sub :: Nat -> Nat -> Nat

sub n m = ???

EXERCISE: Putting the two together
data Nat = Zero -- base constructor

 | Succ Nat -- inductive constructor

add :: Nat -> Nat -> Nat

add n m = ???

data Nat = Zero -- base constructor

 | Succ Nat -- inductive constructor

add :: Nat -> Nat -> Nat

add Zero m = ??? -- base case

add (Succ n) m = ??? -- inductive case

EXERCISE: Putting the two together
data Nat = Zero -- base constructor

 | Succ Nat -- inductive constructor

sub :: Nat -> Nat -> Nat

sub n m = ???

sub :: Nat -> Nat -> Nat

sub n Zero = ??? -- base case 1

sub Zero _ = ??? -- base case 2

sub (Succ n) (Succ m) = ??? -- inductive case

Lesson: Recursive code mirrors recursive data
Which of multiple arguments should you recurse on?

Key: Pick the right inductive strategy!

(easiest if there is a single argument of course…)

Example: Calculator
I want to implement an arithmetic calculator to evaluate expressions like:

4.0 + 2.9

3.78 – 5.92

(4.0 + 2.9) * (3.78 - 5.92)

What is a Haskell datatype to represent these expressions?

data Expr = ???

data Expr = Num Float

 | Add Expr Expr

 | Sub Expr Expr

 | Mul Expr Expr

We can represent expressions as

e0, e1, e2 :: Expr

e0 = Add (Num 4.0) (Num 2.9)

e1 = Sub (Num 3.78) (Num 5.92)

e2 = Mul e0 e1

EXERCISE: Expression Evaluator
Write a function to evaluate an expression.

-- >>> eval (Add (Num 4.0) (Num 2.9))

-- 6.9

eval :: Expr -> Float

eval e = ???

Recursion is…
Building solutions for big problems from solutions for sub-problems

Base case: what is the simplest version of this problem and how do I solve it?

Inductive strategy: how do I break down this problem into sub-problems?

Inductive case: how do I solve the problem given the solutions for

subproblems?

Lists
Lists aren’t built-in! They are an algebraic data type like any other:

data List

 = Nil -- ^ base constructor

 | Cons Int List -- ^ inductive constructor

List [1, 2, 3] is represented as Cons 1 (Cons 2 (Cons 3 Nil))

Built-in list constructors [] and (:) are just fancy syntax for Nil and Cons

Functions on lists follow the same general strategy:

length :: List -> Int

length Nil = 0 -- base case

length (Cons _ xs) = 1 + length xs -- inductive case

EXERCISE: Appending Lists
What is the right inductive strategy for appending two lists?

-- >>> append (Cons 1 (Cons 2 (Cons 3 Nil))) (Cons 4 (Cons 5 (Cons

6 Nil)))

-- (Cons 1 (Cons 2 (Cons 3 (Cons 4 (Cons 5 (Cons 6 Nil))))))

append :: List -> List -> List

append xs ys = ??

Trees
Lists are unary trees with elements stored in the nodes:

Lists are unary trees

data List = Nil | Cons Int List

How do we represent binary trees with elements stored in the nodes?

Binary trees with data at nodes

QUIZ: Binary trees I
What is a Haskell datatype for binary trees with elements stored in the nodes?

Binary trees with data at nodes

(A) data Tree = Leaf | Node Int Tree

(B) data Tree = Leaf | Node Tree Tree

(C) data Tree = Leaf | Node Int Tree Tree

(D) data Tree = Leaf Int | Node Tree Tree

(E) data Tree = Leaf Int | Node Int Tree Tree

Binary trees with data at nodes

data Tree = Leaf | Node Int Tree Tree

t1234 = Node 1

 (Node 2 (Node 3 Leaf Leaf) Leaf)

 (Node 4 Leaf Leaf)

Functions on trees
depth :: Tree -> Int

depth t = ??

QUIZ: Binary trees II
What is a Haskell datatype for binary trees with elements stored in the leaves?

Binary trees with data at leaves

(A) data Tree = Leaf | Node Int Tree

(B) data Tree = Leaf | Node Tree Tree

(C) data Tree = Leaf | Node Int Tree Tree

(D) data Tree = Leaf Int | Node Tree Tree

(E) data Tree = Leaf Int | Node Int Tree Tree

data Tree = Leaf Int | Node Tree Tree

t12345 = Node

 (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))

 (Node (Leaf 4) (Leaf 5))

Why use Recursion?
1. Often far simpler and cleaner than loops

But not always…

2. Structure often forced by recursive data

3. Forces you to factor code into reusable units (recursive functions)

Why not use Recursion?
1. Slow

2. Can cause stack overflow

Example: factorial
fac :: Int -> Int

fac n

 | n <= 1 = 1

 | otherwise = n * fac (n - 1)

Lets see how fac 4 is evaluated:

<fac 4>

 ==> <4 * <fac 3>> -- recursively call `fact 3`

 ==> <4 * <3 * <fac 2>>> -- recursively call `fact 2`

 ==> <4 * <3 * <2 * <fac 1>>>> -- recursively call `fact 1`

 ==> <4 * <3 * <2 * 1>>> -- multiply 2 to result

 ==> <4 * <3 * 2>> -- multiply 3 to result

 ==> <4 * 6> -- multiply 4 to result

 ==> 24

Each function call <> allocates a frame on the call stack

expensive

the stack has a finite size

Can we do recursion without allocating stack frames?

Tail Recursion
Recursive call is the top-most sub-expression in the function body

i.e. no computations allowed on recursively returned value

i.e. value returned by the recursive call == value returned by function

QUIZ: Is this function tail recursive?
fac :: Int -> Int

fac n

 | n <= 1 = 1

 | otherwise = n * fac (n - 1)

A. Yes

B. No

Tail recursive factorial
Let’s write a tail-recursive factorial!

facTR :: Int -> Int

facTR n = ...

HINT: Lets first write it with a loop

Lets see how facTR is evaluated:

<facTR 4>

 ==> <<loop 1 4>> -- call loop 1 4

 ==> <<<loop 4 3>>> -- rec call loop 4 3

 ==> <<<<loop 12 2>>>> -- rec call loop 12 2

 ==> <<<<<loop 24 1>>>>> -- rec call loop 24 1

 ==> 24 -- return result 24!

Each recursive call directly returns the result

without further computation

no need to remember what to do next!

no need to store the “empty” stack frames!

Why care about Tail Recursion?
Because the compiler can transform it into a fast loop

facTR n = loop 1 n

 where

 loop acc n

 | n <= 1 = acc

 | otherwise = loop (acc * n) (n - 1)

function facTR(n){

 var acc = 1;

 while (true) {

 if (n <= 1) { return acc ; }

 else { acc = acc * n; n = n - 1; }

 }

}

Tail recursive calls can be optimized as a loop

no stack frames needed!

Part of the language specification of most functional languages

compiler guarantees to optimize tail calls

That’s all folks!

Generated by Hakyll, template by Armin Ronacher, suggest improvements here.

http://jaspervdj.be/hakyll
http://lucumr.pocoo.org/
https://github.com/ucsd-progsys/liquidhaskell-blog/

