
Lexing and Parsing

Plan for this week
Last week:

How do we evaluate a program given its AST?

eval :: Env -> Expr -> Value

This week:

How do we convert program text into an AST?

parse :: String -> Expr

Example: calculator with variables
AST representation:

data Aexpr

 = AConst Int

 | AVar Id

 | APlus Aexpr Aexpr

 | AMinus Aexpr Aexpr

 | AMul Aexpr Aexpr

 | ADiv Aexpr Aexpr

Evaluator:

eval :: Env -> Aexpr -> Value

...

Using the evaluator:

λ> eval [] (APlus (AConst 2) (AConst 6))

8

λ> eval [("x", 16), ("y", 10)] (AMinus (AVar "x") (AVar "y"))

6

λ> eval [("x", 16), ("y", 10)] (AMinus (AVar "x") (AVar "z"))

*** Exception: Error {errMsg = "Unbound variable z"}

But writing ASTs explicitly is really tedious, we are used to writing programs as

text!

We want to write a function that converts strings to ASTs if possible:

parse :: String -> Aexpr

For example:

λ> parse "2 + 6"

APlus (AConst 2) (AConst 6)

λ> parse "(x - y) / 2"

ADiv (AMinus (AVar "x") (AVar "y")) (AConst 2)

λ> parse "2 +"

*** Exception: Error {errMsg = "Syntax error"}

Two-step-strategy
How do I read a sentence “He ate a bagel”?

First split into words: ["He", "ate", "a", "bagel"]

Then relate words to each other: “He” is the subject, “ate” is the verb, etc

Let’s do the same thing to “read” programs!

Step 1 (Lexing) : From String to Tokens
A string is a list of characters:

Characters

First we aggregate characters that “belong together” into tokens (i.e. the “words”

of the program):

Tokens

We distinguish tokens of di"erent kinds based on their format:

all numbers: integer constant

alphanumeric, starts with a letter: identifier

+ : plus operator

etc

Step 2 (Parsing) : From Tokens to AST
Next, we convert a sequence of tokens into an AST

This is hard…

… but the hard parts do not depend on the language!

Parser generators

Given the description of the token format generates a lexer

Given the description of the grammar generates a parser

We will be using parser generators, so we only care about how to describe the token

format and the grammar

Lexing
We will use the tool called alex to generate the lexer

Input to alex : a .x file that describes the token format

Tokens
First we list the kinds of tokens we have in the language:

data Token

 = NUM AlexPosn Int

 | ID AlexPosn String

 | PLUS AlexPosn

 | MINUS AlexPosn

 | MUL AlexPosn

 | DIV AlexPosn

 | LPAREN AlexPosn

 | RPAREN AlexPosn

 | EOF AlexPosn

Token rules
Next we describe the format of each kind of token using a rule:

 [\+] { \p _ -> PLUS p }

 [\-] { \p _ -> MINUS p }

 [*] { \p _ -> MUL p }

 [\/] { \p _ -> DIV p }

 \({ \p _ -> LPAREN p }

 \) { \p _ -> RPAREN p }

 $alpha [$alpha $digit _ \']* { \p s -> ID p s }

 $digit+ { \p s -> NUM p (read s) }

Each line consist of:

a regular expression that describes which strings should be recognized as this

token

a Haskell expression that generates the token

You read it as:

if at position p in the input string

you encounter a substring s that matches the regular expression

evaluate the Haskell expression with arguments p and s

Regular Expressions
A regular expression has one of the following forms:

[c1 c2 ... cn] matches any of the characters c1 .. cn

[0-9] matches any digit

[a-z] matches any lower-case letter

[A-Z] matches any upper-case letter

[a-z A-Z] matches any letter

R1 R2 matches a string s1 ++ s2 where s1 matches R1 and s2 matches R2

e.g. [0-9] [0-9] matches any two-digit string

R+ matches one or more repetitions of what R matches

e.g. [0-9]+ matches a natural number

R* matches zero or more repetitions of what R matches

QUIZ

cse130

https://ucsd-cse130.github.io/wi20

QUIZ
Which of the following strings are matched by [a-z A-Z] [a-z A-Z 0-9]* ?

(A) (empty string)

(B) 5

(C) x5

(D) x

(E) C and D

Back to token rules
We can name some common regexps like:

$digit = [0-9]

$alpha = [a-z A-Z]

and write [a-z A-Z] [a-z A-Z 0-9]* as $alpha [$alpha $digit]*

 [\+] { \p _ -> PLUS p }

 [\-] { \p _ -> MINUS p }

 [*] { \p _ -> MUL p }

 [\/] { \p _ -> DIV p }

 \({ \p _ -> LPAREN p }

 \) { \p _ -> RPAREN p }

 $alpha [$alpha $digit _ \']* { \p s -> ID p s }

 $digit+ { \p s -> NUM p (read s) }

When you encounter a + , generate a PLUS token

…

When you encounter a nonempty string of digits, convert it into an integer and

generate a NUM

When you encounter an alphanumeric string that starts with a letter, save it in

an `ID token

Running the Lexer
From the token rules, alex generates a function alexScan which

given an input string, find the longest prefix p that matches one of the rules

if p is empty, it fails

otherwise, it converts p into a token and returns the rest of the string

We wrap this function into a handy function

parseTokens :: String -> Either ErrMsg [Token]

which repeatedly calls alexScan until it consumes the whole input string or fails

We can test the function like so:

λ> parseTokens "23 + 4 / off -"

Right [NUM (AlexPn 0 1 1) 23

 , PLUS (AlexPn 3 1 4)

 , NUM (AlexPn 5 1 6) 4

 , DIV (AlexPn 7 1 8)

 , ID (AlexPn 9 1 10) "off"

 , MINUS (AlexPn 13 1 14)

]

λ> parseTokens "%"

Left "lexical error at 1 line, 1 column"

QUIZ
What is the result of parseTokens "92zoo" (positions omitted for readability)?

(A) Lexical error

(B) [ID "92zoo"]

(C) [NUM "92"]

(D) [NUM "92", ID "zoo"]

Parsing
We will use the tool called happy to generate the parser

Input to happy : a .y file that describes the grammar

Wait, wasn’t this the grammar?

data Aexpr

 = AConst Int

 | AVar Id

 | APlus Aexpr Aexpr

 | AMinus Aexpr Aexpr

 | AMul Aexpr Aexpr

 | ADiv Aexpr Aexpr

This was abstract syntax

Now we need to describe concrete syntax

What programs look like when written as text

and how to map that text into the abstract syntax

Grammars
A grammar is a recursive definition of a set of trees

each tree is a parse tree for some string

parse a string s = find a parse tree for s that belongs to the grammar

A grammar is made of:

Terminals: the leaves of the tree (tokens!)

Nonterminals: the internal nodes of the tree

Production Rules that describe how to “produce” a non-terminal from

terminals and other non-terminals

i.e. what children each nonterminal can have:

Aexpr : -- NT Aexpr can have as children:

 | Aexpr '+' Aexpr { ... } -- NT Aexpr, T '+', and NT Aexpr, or

 | Aexpr '-' AExpr { ... } -- NT Aexpr, T '-', and NT Aexpr, or

 | ...

Terminals
Terminals correspond to the tokens returned by the lexer

In the .y file, we have to declare with terminals in the rules correspond to which

tokens from the Token datatype:

%token

 TNUM { NUM _ $$ }

 ID { ID _ $$ }

 '+' { PLUS _ }

 '-' { MINUS _ }

 '*' { MUL _ }

 '/' { DIV _ }

 '(' { LPAREN _ }

 ')' { RPAREN _ }

Each thing on the left is terminal (as appears in the production rules)

Each thing on the right is a Haskell pattern for datatype Token

We use $$ to designate one parameter of a token constructor as the value of

that token

we will refer back to it from the production rules

Production rules
Next we define productions for our language:

Aexpr : TNUM { AConst $1 }

 | ID { AVar $1 }

 | '(' Aexpr ')' { $2 }

 | Aexpr '*' Aexpr { AMul $1 $3 }

 | Aexpr '+' Aexpr { APlus $1 $3 }

 | Aexpr '-' Aexpr { AMinus $1 $3 }

The expression on the right computes the value of this node

$1 $2 $3 refer to the values of the respective child nodes

Example: parsing (2) as AExpr :

1. Lexer returns a sequence of Token s: [LPAREN, NUM 2, RPAREN]

2. LPAREN is the token for terminal '(' , so let’s pick production '(' Aexpr

')'

3. Now we have to parse NUM 2 as Aexpr and RPAREN as ')'

4. NUM 2 is a token for nonterminal TNUM , so let’s pick production TNUM

5. The value of this Aexpr node is AConst 2 , since the value of TNUM is 2

6. The value of the top-level Aexpr node is also AConst 2 (see the '(' Aexpr

')' production)

QUIZ
What is the value of the root AExpr node when parsing 1 + 2 + 3 ?

Aexpr : TNUM { AConst $1 }

Aexpr : TNUM { AConst $1 }

 | ID { AVar $1 }

 | '(' Aexpr ')' { $2 }

 | Aexpr '*' Aexpr { AMul $1 $3 }

 | Aexpr '+' Aexpr { APlus $1 $3 }

 | Aexpr '-' Aexpr { AMinus $1 $3 }

(A) Cannot be parsed as AExpr

(B) 6

(C) APlus (APlus (AConst 1) (AConst 2)) (AConst 3)

(D) APlus (AConst 1) (APlus (AConst 2) (AConst 3))

Running the Parser
First, we should tell the parser that the top-level non-terminal is AExpr :

%name aexpr

From the production rules and this line, happy generates a function aexpr that

tries to parse a sequence of tokens as AExpr

We package this function together with the lexer and the evaluator into a handy

function

evalString :: Env -> String -> Int

We can test the function like so:

λ> evalString [] "1 + 3 + 6"

10

λ> evalString [("x", 100), ("y", 20)] "x - y"

???

λ> evalString [] "2 * 5 + 5"

???

λ> evalString [] "2 - 1 - 1"

???

Precedence and associativity
λ> evalString [] "2 * 5 + 5"

20

The problem is that our grammar is ambiguous!

There are multiple ways of parsing the string 2 * 5 + 5 , namely

APlus (AMul (AConst 2) (AConst 5)) (AConst 5) (good)

AMul (AConst 2) (APlus (AConst 5) (AConst 5)) (bad!)

Wanted: tell happy that * has higher precedence than + !

λ> evalString [] "2 - 1 - 1"

2

There are multiple ways of parsing 2 - 1 - 1 , namely

AMinus (AMinus (AConst 2) (AConst 1)) (AConst 1) (good)

AMinus (AConst 2) (AMinus (AConst 1) (AConst 1)) (bad!)

Wanted: tell happy that - is left-associative!

How do we communicate precedence and associativity to happy ?

Solution 1: Grammar factoring
We can split the AExpr non-terminal into multiple “levels”

Aexpr : Aexpr '+' Aexpr2

 | Aexpr '-' Aexpr2

 | Aexpr2

Aexpr2 : Aexpr2 '*' Aexpr3

 | Aexpr2 '/' Aexpr3

 | Aexpr3

Aexpr3 : TNUM

 | ID

 | '(' Aexpr ')'

Intuition: AExpr2 “binds tighter” than AExpr , and AExpr3 is the tightest

Now I cannot parse the string 2 * 5 + 5 as

AMul (AConst 2) (APlus (AConst 5) (AConst 5))

Why?

Solution 2: Parser directives
This problem is so common that parser generators have a special syntax for it!

%left '+' '-'

%left '*' '/'

What this means:

All our operators are left-associative

Operators on the lower line have higher precedence

That’s all folks!

Generated by Hakyll, template by Armin Ronacher, suggest improvements here.

http://jaspervdj.be/hakyll
http://lucumr.pocoo.org/
https://github.com/ucsd-progsys/liquidhaskell-blog/

