CSE 130 Final, Spring 2018

Nadia Polikarpova

June 11, 2018

NAME

SID

e You have 180 minutes to complete this exam.
o Where limits are given, write no more than the amount specified.

e You may refer to a double-sided cheat sheet, but no electronic
materials.

o Questions marked with * are difficult; we recommend solving them
last.

» Avoid seeing anyone else’s work or allowing yours to be seen.
e Do not communicate with anyone but an exam proctor.

« If you have a question, raise your hand.

e Good luck!

Q1: Lambda Calculus: Sets [20 pts]

In this question you will implement sets of natural numbers in A-calculus.
Your set data structure has to support the following four operations:

EMPTY -- | The empty set

INSERT n s -- | Set that contains the number n
- and all elements of the set s

HAS s n -— | Does set s contain number n?

INTERSECT s1 s2 —- | Set that contains all the elements
—= common to sl1 and s2

You can use any function defined in Appendix I (at the end of the exam).
Your implementation must satisfy the following test cases:

let S012 = INSERT ZERO (INSERT ONE (INSERT TWO EMPTY))
let 5234 = INSERT TWO (INSERT THREE (INSERT FOUR EMPTY))
eval empty :

HAS EMPTY ZERO

=~> FALSE

eval insert_O :
HAS S012 ZERO
=~> TRUE

eval insert_1
HAS S012 THREE
=~> FALSE

eval intersect O :
HAS (INTERSECT S012 S234) TWO
=~> TRUE

eval intersect_1
HAS (INTERSECT S012 S234) THREE
=~> FALSE

1.1 Empty set [5 pts]

let EMPTY =

1.2 Insert an element [5 pts]

let INSERT =

1.3 Membership [5 pts]

let HAS =

1.4 Set intersection [5 pts]

let INTERSECT =

Q2: Datatypes and Recursion: Decision Trees [60 pts]

A binary decision tree (BDT) is an alternative representation of a Boolean
formula. In a BDT, each leaf is labeled with True or False, and each internal
node is labeled with a variable, and represents branching on the value of that
variable.

False

True False True False

Figure 1: (left) A BDT representation of the formula z A (y V z). (right)
Its evaluation with x = True, y = False, z = True

Figure 1 (left) shows one possible BDT representation of the Boolean formula
x A (yV z). To evaluate a BDT, we start at the root; in each internal node,
we descend into the left sub-tree if the node’s variable is True, and into the
right sub-tree if the node’s variable is False); the leaf we end up in gives the
value of the formula. Figure 1 (right) depicts the evaluation of our example
BDT with the following variable values: x = True, y = False, z = True.

In this question, you will implement several Haskell functions that operate
on BDTs. We will represent BDTs using the following datatype:

data BDT = Leaf Bool | Node Id BDT BDT
where Id is just a synonym for strings:
type Id = String

We will also use the type Env to represent an environment, i.e. a mapping
from variable names to Boolean values:

type Env = [(Id, Bool)]

Your implementation can rely on the following function to look up the value
of a variable in an environment:

lookup :: Id -> Env -> Bool
Besides 1lookup, your implementations can use:
o any library functions on Booleans; for example: not, (&&), (I1), (==

o any library functions on strings; for example: (==), (<), (>)

2.1 Evaluation [10 pts]
Implement the function eval, which evaluates a BDT in a given environment.
You can assume that the environment contains all variables of the BDT.

Your implementation must satisfy the following test cases, where env =
[(x,True), (y,False), (z,True)]:

eval env (Leaf False)

==> False

eval env (Node "x" (Leaf True) (Leaf False))
==> True

eval env (Node "x" (Node "y" (Leaf True) (Leaf False)) (Leaf False))
==> False

eval :: Env -> BDT -> Bool

2.2 Negation [15 pts]

The cool thing about decision trees is that you can perform logical operations
(negation, conjunction, and disjunction) directly on the trees, without having
to convert them back into a traditional formula representation.

Implement the function tNot, which returns a BDT that represents the
negation of a given BDT.

Your implementation must satisfy the following test case for any BDT t and
any environment env:

eval env (tNot t) == not (eval env t)
==> True

tNot :: BDT -> BDT

2.3 Conjunction [15 pts]

Implement the function tAnd that computes a conjunction of two BDTs.

Your implementation must satisfy the following test case for any two BDTs
tl and tr, and any environment env:

eval env (tAnd tl tr) == (eval env tl && eval env tr)
==> True

It’s okay if the resulting BDT has duplicate variables. For example, the
simplest solution will satisfy the following test case (depicted on Figure 2):

let t = Node "x" (Leaf True) (Leaf False) in tAnd t t
==> Node "x" (Node "x" (Leaf True) (Leaf False)) (Leaf False)

tAnd

| True | | False | | True | | False |

Figure 2: A test case for tAnd

tAnd :: BDT -> BDT -> BDT

2.4 Ordered BDTs* [20 pts]

The simple implementation of tAnd from section 3.3 can cause the BDT to
have duplicate variables, which makes the tree less compact and slower to
evaluate. One way to eliminate this redundancy is to enforce ordering on
all the variables in the tree, such that the variable in each node is strictly less
(lexicographically) than all variables in its sub-trees.

For example, the BDT in Figure 1 is ordered, because x < y and y < z both
hold. In contrast, the BDT Figure 2 is not ordered, because x < x doesn’t
hold.

Implement the function tAnd0Ord that computes a conjunction of two ordered
BDTs, and returns an ordered BDT.

Your implementation must satisfy the following test cases:

tAndOrd (Node "x" (Leaf True) (Leaf False))
(Node "x" (Leaf True) (Leaf False))
==> (Node "x" (Leaf True) (Leaf False))
tAndOrd (Node "x" (Leaf True) (Leaf False))
(Node "y" (Leaf True) (Leaf False))
==> (Node "x"
(Node "y" (Leaf True) (Leaf False))
(Leaf False))
tAndOrd (Node "y" (Leaf True) (Leaf False))
(Node "x" (Leaf True) (Leaf False))
==> (Node "x"
(Node "y" (Leaf True) (Leaf False))
(Leaf False))

tAndOrd :: BDT -> BDT -> BDT

Q3: Higher-Order Functions [40 pts]

Convert each of the given recursive functions into a function that always
returns the same result but doesn’t directly use recursion. Instead, your
function can use the following higher-order functions from the standard
library:

map :: (@ => b) -> [a] -> [b]

filter :: (a -> Bool) -> [a] -> [a]
foldr :: (a->b ->b) =>b ->[a] > b
foldl :: (b ->a ->b) > b -> [a] > b

Apart from these four functions, your implementation can only use the list
constructors and library functions on integers (e.g. comparisons). You are
allowed to introduce (non-recursive) auxiliary functions.

3.1 List reversal [5 pts]

reverse :: [a] —> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

Non-recursive version:

reverse :: [a] -> [a]

3.2 Absolute values [10 pts]

absValues :: [Int] -> [Int]
absValues [] =[]
absValues (x:xs)
| x <0 = (-x):(absValues xs)
| otherwise x :(absValues xs)

Non-recursive version:

absValues :: [Int] -> [Int]

3.3 Remove duplicates [15 pts]

dedup :: [Int] -> [Int]
dedup [1 = []
dedup (x:xs) = x:(remove x (dedup xs))
where
remove x [] = []
remove x (y:ys)
| x ==y = remove X ys
| otherwise = y:(remove x ys)

Non-recursive version:

dedup :: [Int] -> [Int]

10

3.4 Insertion Sort* [20 pts]

sort :: [Int] -> [Int]
sort [= []
sort (x:xs) = insert x (sort xs)
where
insert x []
insert x (y:ys)

[x]
if x <=y
then x:y:ys
else y:(insert x ys)

Non-recursive version:

sort :: [Int] -> [Int]

11

Q4: Semantics and Type Systems [30 pts]

In this question you will use the operational semantics and the type system of
Nano2 (given in Appendix IT at the end of the exam) to derive some reduction
judgments E,e => E',e' and typing judgments G |- e :: S.

A complete derivation should satisfy the following conditions:

 all judgments in the derivation are complete
« every rule (or axiom) application is labeled with the name of the rule
« all leaves are axioms

Here is an example of a complete reduction derivation:

E, (1 +2)+ (A +5) = E, 3+ ((4+05)

4.1 Reduction 1 [10 points]

Complete the following reduction derivation, where

E=[f ><[], \xy—>x+ y>]

L_____]
E, => E,

L_____ 3
E, => E,

L_____ 3
E, £f12 =>E,

12

4.2 Reduction 2 [10 points]

Complete the following reduction derivation (same E as in 4.1):

E, <[, \xy >x+y>12=>

4.3 Typing 1 [10 points]

Complete the following typing derivation

[______] ___ [______
[___]
[T

0 I1-\x >x+5 ::

13

4.4 Typing 2 [10 points]

Complete the following typing derivation where

G=[f : Int -> Int, id : forall a. a -> al

o S
G |-

C_____ - (_____]
G I- @ |-

[___]
G |- id f

14

Q5: Prolog: Selection sort [30 pts]

In this question, we will implement Selection sort in Prolog. As a reminder,
this algorithm sorts a list by repeatedly extracting the minimum element
from the input list and appending it to the output list.

Unless otherwise stated, your solution cannot use any library func-
tions/predicates or introduce auxiliary predicates.

5.1 Insert [10 points]

Write a Prolog predicate insert (X, Ys, Zs) which is true whenever Zs is
the result of inserting the element X into Ys at some position.

Your implementation should satisfy the following test cases

?- insert(1l, [2,3], Zs).

Zs = [1,2,3];
Zs = [2,1,3];
Zs = [2,3,1];
false.

?- insert(1l, Ys, [1,2,1]).

Ys = [2,1];
Ys = [1,2];
false.

15

5.2 Minimum element [10 points]
Write a Prolog predicate 1ist_min(Acc, Xs, Min) which is true when Min

is the minimum between the number Acc and the smallest element of list Xs
(if non-empty).

In this problem, you can use the built-in function min(X,Y) that computes
the minimum of two numbers.

Your implementation should satisfy the following test cases

?7- list min(i, [1, X).
X = 1; false.

?7- list min(1, [3,2], X).
X =1; false.

?7- list_min(2, [3,1], X).
X =1; false.

16

5.3 Selection Sort [10 points]

Write a Prolog predicate selection_sort(Xs, Ys) which is true when the
list Ys contains the same elements as Xs but in ascending order.

Your solution can use the predicates insert and 1list_min defined in 5.1 and
5.2.

Your implementation should satisfy the following test cases (when queried for
the first solution only).

?7- selection_sort([3,2,4,1], VYs).
Ys = [1,2,3,4].

?7- selection_sort([1,2,1,2], Ys).
Ys = [1,1,2,2].

17

Appendix I: Lambda Calculus Cheat Sheet

Here is a list of definitions you may find useful for Q2

-— Booleans ———————————————————————————————-
let TRUE =\xy -> x

let FALSE = \x y -> y

let ITE =\bxy ->bxy

let NOT =\bxy ->byx

let AND = \bl b2 -> ITE bl b2 FALSE

let OR = \bl b2 -> ITE bl TRUE b2

-—- Patrs ————————————————— - —— o ———

let PAIR =\xyb >bxy

let FST = \p -> p TRUE

let SND = \p -> p FALSE

-- Numbers —-—-—-—————===——=—————cm——e
let ZERO = \f x —> x

let ONE = \f x > f x

let TWO = \f x > f (f x)

let THREE = \f x —> f (f (f x))

-— Arithmetic ——————-———————————————————
let INC =\nfx-—>f (nf x)

let ADD =\nm->mn INC m

let MUL = \nm ->n (ADD m) ZERO

let ISZ = \n -> n (\z -> FALSE) TRUE

let EQL = \nm -> AND (ISZ (SUB n m)) (ISZ (SUB m n))

18

Appendix II: Syntax and Semantics of Nano2

Expression syntax:
e ::=n | x| el +e2 | let x=el in e2 | \x > e | el e2
Operational semantics:

[Var] E, x => E, E[x] if x in dom(E)

[Add] E, n1 +n2 =>E, n where n == nl1 + n2

[Add-L] ===
E, el + e2 => E', el' + e2
E, e2 => E', e2'
[Add-R] —————————mmmmmmmmmmee
E, n1 + e2 => E', nl + e2'
[Let] E, let x = v in e2 => E[x—>v], e2
E, el => E', el
[Let-Def] -——--—————————————m oo
E, let x = el in e2 => E', let x = el' in e2
[Abs] E, \x > e =>E, <E,\x —> &>
[App] E, <E1,\x —> e> v => E1[x->Vv], e
E, el => E', el
[App-L] -
E, el e2 => E', el' e2
E, e =>E', e'
[App-R] -

19

Syntax of types:

T ::=Int | TL1 -> T2 | a
S ::=T | forall a . S

Typing rules:

[T-Num] G |- n :: Int

[T-Add] —=—====—====mmmmm— oo
G |- el +e2 Int
[T-Var] G |- x :: S if x:S in G
G, x:T1 |- e T2
[T-Abs] ———=——==—=————m————mmm

Gl-el ::T1 ->T2 G |-e2 ::T1
[T-App] -

O

[T-Inst] ——————-———-—-———-———

[T-Gen] --—-—--—--——-—--—--—-—--—— if not (a in FTV(G))

Here n € N is natural number, v € Val is a value, x € Var is a variable,
e € Expr is an expression, £ € Var — Val is an environment, a € TVar is a
type variable, T € Type is a type, S € Poly is a type scheme (a poly-type),
G € Var — Poly is a type environment (a context).

20

	Q1: Lambda Calculus: Sets [20 pts]
	1.1 Empty set [5 pts]
	1.2 Insert an element [5 pts]
	1.3 Membership [5 pts]
	1.4 Set intersection [5 pts]

	Q2: Datatypes and Recursion: Decision Trees [60 pts]
	2.1 Evaluation [10 pts]
	2.2 Negation [15 pts]
	2.3 Conjunction [15 pts]
	2.4 Ordered BDTs* [20 pts]

	Q3: Higher-Order Functions [40 pts]
	3.1 List reversal [5 pts]
	3.2 Absolute values [10 pts]
	3.3 Remove duplicates [15 pts]
	3.4 Insertion Sort* [20 pts]

	Q4: Semantics and Type Systems [30 pts]
	4.1 Reduction 1 [10 points]
	4.2 Reduction 2 [10 points]
	4.3 Typing 1 [10 points]
	4.4 Typing 2 [10 points]

	Q5: Prolog: Selection sort [30 pts]
	5.1 Insert [10 points]
	5.2 Minimum element [10 points]
	5.3 Selection Sort [10 points]

	Appendix I: Lambda Calculus Cheat Sheet
	Appendix II: Syntax and Semantics of Nano2

