CSE 130, Spring 2014 Name/ID

ANSWER KEY

Instructor: Ranjit Jhala

Final Exam

Instructions: read these first!

Do not open the exam, turn it over, or look inside until you are told to begin.
Switch off cell phones and other potentially noisy devices.
Write your full name on the line at the top of this page. Do not separate pages.

You may refer to any printed materials, but no computational devices (such as laptops,
calculators, phones, iPads, friends, enemies, pets, lovers).

Read questions carefully. Show all work you can in the space provided.

Where limits are given, write no more than the amount specified.
The rest will be ignored.

Avoid seeing anyone else’s work or allowing yours to be seen.
Do not communicate with anyone but an exam proctor.

If you have a question, raise your hand.

When time is up, stop writing.

The points for each part are rough indication of the time that part should take.

Question | Points | Score
1 25
2 25
3 35
4 45
5 20
Total: 150

CSE 130, Spring 2014 Final Exam Page 1 of 12

1. [25 points] For each of the following OCaml or Scala programs, write down the value of ans.

(a) [5 points]
let rec range i j =

if i > 3
then []
else i :: (range (i+1) 7)
let ans = range 1 5
ans = [1;2;3;4;5]

(b) [5 points]
let gelato g =
let x = 10 in

g x

let x 100

let £y

Il
b

ty

let ans = gelato £

ans = 110

(c) [5 points]
val ans = for (1 <— 1 to 5
; J <=1 to 5
; k <= j to 5
;o 1f (i1 + J*j == kxk))
yield (i, 3, k)

ans = Vector((3,4,5))

CSE 130, Spring 2014 Final Exam Page 2 of 12

(d) [6 points]

class A () {
def foo(x:Int) = 1 + this.bar (x)
def bar(x:Int) = 1 + x

}

class B () extends A {
override def bar(x:Int) = 100 + x

}

val x = (new A) foo 10

val y = (new B) foo 10

val ans = (x, V)

ans = (12, 111)

(e) [4 points]

var ml = Map("tako" -> "nom nom", "uni" -> "blergh")
var m2 = ml

ml += ("uni" -> "delicioso")

val ans = m2 ("uni")

ans = "blergh”

CSE 130, Spring 2014 Final Exam Page 3 of 12

2. [25 points] Consider the following Scala class and type definitions.

class A
class B extends A

type Point2A = {val x:A; val y:A}
type Point2B = {val x:B; val y:B}
type Point3A = {val x:A; val y:A; val z:A}
type Point3B = {val x:B; val y:B; val z:B}

Which of the below snippets of code typechecks? Circle the case that you believe holds.

(a) [5 points]
def ans = { def foo(p:Point2A)
val p3 : Point3A

error ("ignore me")

error ("ignore me")

foo (p3) }
Does Not Typecheck Typechecks [YES: width-subtyping]
(b) [5 points]
def ans = { def foo(p:Point3A) = error ("ignore me")
val p2 : Point2A = error ("ignore me")
foo(p2) }
Does Not Typecheck Typechecks [NO]
(c) [5 points]
def ans = { def foo(p: Point2A) = error("ignore me")
val p2 : Point2B = error ("ignore me")
foo(p2) }
Does Not Typecheck Typechecks [YES: depth-subtyping]
(d) [5 points]
def ans = { def foo(f: (Point2A) => Int) = error("ignore me")
def f2(p:Point2B): Int = error ("ignore me")
foo (f2) 1}
Does Not Typecheck TypecheckdNO: CO-VARIANT inputs]
(e) [5 points]
def ans = { def foo(f: (Point3B) => Int) = error("ignore me")
def f2(p:Point2A): Int = error ("ignore me")
foo (£2) }

Does Not Typecheck TypechpéksS: CONTRA-VARIANT inputs]

CSE 130, Spring 2014 Final Exam Page 4 of 12

3. [35 points] A binary-search-ordered dictionary is a data structure that maps keys to values. We will represent dictio-
naries using a polymorphic Ocaml datatype:

type ('k, ’'v) dict
= Empty
| Node of "k = v = ("k, ’'v) dict = ('k, ’'v) dict

That is, a dictionary is represented as a tree, which is either empty, or a node with:

1. abinding from a ’ k key to an ’ v value,
2. aleft sub-dictionary, and

3. aright sub-dictionary.

For example, consider the dictionary

fruit price
apple 2.25
banana 1.50
cherry 2.75
grape 2.65
kiwi 3.99
orange 0.75
peach 2.25

that represents the prices (per pound) of various fruits. This dictionary is represented by the tree (on the left) which in
turn is represented by the Ocaml value (of type (string, float) dict)boundto fruitd on the right.

grape: let fruitd =
2.65 Node ("grape", 2.65,
| | Node ("banana", 1.50,
banana: orange: Node ("apple", 2.25, Empty, Empty),
_1.50____ _0.75__ Node ("cherry", 2.75, Empty, Empty)),
| | | | Node ("orange", 0.75,
apple: cherry: kiwi: peach: Node ("kiwi", 3.99, Empty, Empty),
2.25 2.75 3.99 2.25 Node ("peach", 2.25, Empty, Empty)))

Notice the tree is Binary-Search-Ordered, meaning for each node with a key k,

e keys in the left subtree are less than k, and

e keys in the right subtree are greater than k.

CSE 130, Spring 2014 Final Exam Page 5 of 12

(a) [5 points] Recall the type "a option = None | Some of ’a. Write a function
val find: 'k -> ('k, ’'v) dict -> v option
such that find k devaluatesto Some v if v is the value associated with the key k in the dictionary d, and None
otherwise. When you are done, you should get the following behavior:

find "cherry" fruitd
- : float option = Some 2.75

find "pomegranate" fruitd
- : float option = None
Fill in the blanks below to implement £ind as described.

let rec find k d =
match d with
| Empty —>

None
| Node (k’, v'’, 1, r) when k = k" —>

Some V’

| Node (k’, v’, 1, r) when k < k'’ —>

find k |

| Node (k’, v', 1, r) (x k' < k %) —>

findkr

(b) [8 points] Next, write a function
val deleteMax : ('k, ’'v) dict —> ('k = 'v = ('k, ’'v) dict)
such that deleteMax d returns a tuple of the largest key in d, the value corresponding to the key, and the
dictionary without the corresponding key-value pair. When you are done you should get the following behavior:
let d0 = Node ("banana", 1.50,
Node ("apple", 2.25, Empty, Empty),
Node ("cherry", 2.75, Empty, Empty)) ;;

deleteMax d0 ;;

- : (string, float, (string, float) dict) =
= ("cherry", 2.75, Node ("banana", 1.50,
Node ("apple", 2.25, Empty, Empty),
Empty))
Fill in the blanks below to implement deleteMax as described. (It will only be called with non-Empt y trees.)

CSE 130, Spring 2014 Final Exam Page 6 of 12

let rec deleteMax d =
match d with
| Node (k’, v’, 1, Empty) -—>

(K, v, 1)

| Node (k’', v', 1, r) —>

let (k”, v*, r') = deleteMax r in
(k”, v, Node (K, V', I, 1))

(¢) [8 points] Using deleteMax, write a function
val delete : 'k -> ('k, 'v) dict -> ('k, ’'v) dict
such that delete k dreturns the dictionary with all the key-value pairs of d except k. If k was not present in d
then the output should be the same as d. When you are done, you should get the following behavior:

delete "grape" fruitd ;;

- : (string, float) dict
= Node ("cherry", 2.75,
Node ("banana", 1.50,
Node ("apple", 2.25, Empty, Empty),
Empty),
Node ("orange", 0.75,
Node ("kiwi", 3.99, Empty, Empty),
Node ("peach", 2.25, Empty, Empty)))
Fill in the blanks below, using de leteMax, to implement delete:

let rec delete k d =
match d with
| Empty -—>
Empty
| Node (k’, v', Empty, r) when k = k" —->

| Node (k’, v’, 1, r) when k = k’ —>
let (k”, v”, I') = deleteMax | in
Node (k”, v*, I', 1)

| Node (k’, v’, 1, r) when k < k' —>
Node (K’, v, delete k I, r)

| Node (k’, v', 1, r) (* when k/ < k %) —>

Node (K’, v’, |, delete k r)

CSE 130, Spring 2014 Final Exam Page 7 of 12

(d) [7 points] The following function implements a £o1d over the dictionaries.
let rec fold £ b t = match t with
| Empty -> Db
| Node (k, v, 1, r) —> let bO fold £f b r in
let bl = £ k v b0 in

let b2 = fold f bl 1 in
b2

What is the type of fo1d?

val fold : (k-¢'v-¢’a-¢’'a)-¢ ’a-¢ (k,'v) tree -¢, 'a

(e) [7 points] Fill in the blanks below to obtain a function
val keysWithvValue : 'v -> ('k, ’'v) dict -> 'k list «)
such that keysWithValue v d thatreturns the list of keys in d with value v. When done, you should get:

keysWithValue 2.25 fruitd;;
— : string list = ["apple"; "peach"]

let keysWithvValue v d =

let £ k/ v’ acc = if v=v then k' :: acc else acc in

let b =] in

fold £ b d

CSE 130, Spring 2014 Final Exam

Page 8 of 12

4. [45 points] Lets implement Scala-style for-loops in Ocaml, using the following functions:
let skip = []
let yield x = [x]
let rec foreach xs £ = match xs with

[[] > []
| x::xs —> £ x @ foreach xs f

(a) [3 points] What is the type of skip?

val skip : 'a list

(b) [4 points] What is the type of yield?

val yield: 'a-¢ 'alist

(c) [8 points] What is the type of foreach?

val foreach: ‘alist-¢ (Ca-¢ 'blist) -¢ 'b list

(d) [4 points] What is the value of ans?

let ans = foreach [1;2;3] (fun x —->
yield (x * Xx)

ans = [1;4;9]

(e) [6 points] What is the value of ans?

let ans = foreach [1; 2] (fun 1 ->
foreach ["a"; "b"] (fun c —>
yield (i, c)

ans - (1, ") (1, ") (2, "a); (2."D)]

CSE 130, Spring 2014 Final Exam Page 9 of 12

(f) [5 points] Recall the Scala code from the first question:

val ans = for (1 <-— 1 to 5
; J <— 1 to 5
; k <— j to 5
; 1f (i1 + J*xj == kxk))
yield (i, 3, k)

Translate it to the equivalent Ocaml, by filling the blanks below using only the functions yield, skip. (The
function range is from Question 1):

let ans = foreach (range 1 5) (fun i —>
foreach (range i 5) (fun j ->
foreach (range j 5) (fun k ->
if (i*i +] = K*K)
then yield (i,j,k)
else skip

(g) [5 points] Rewrite the usual map function for lists using only foreach, skip and yield:
(# val map : ("a —> 'b) -> ’"a list -> ’'b list *)

let map f xs =
foreach xs (fun x -,
yield (f x)

)

(h) [5 points] Rewrite the usual £i1ter function for lists using only foreach, skip and yield:
(x val filter : (a —> bool) —> ’'a list —-> ’"a list =«*)

let filter f xs =
foreach xs (fun x -¢,
if (f x)
then yield x

else skip

)

CSE 130, Spring 2014 Final Exam

Page 10 of 12

(1) [5 points] The function flatten of type:
val flatten : ’'a list 1list -> ’'a list
has the following behaviour:

flatten [[1;2;3]; [4;51; [61] ;;
- : int list = [1;2;3;4;5;6]

Write f1latten using only foreach, skip and yield:

let flatten xss =
foreach xss (fun xs -,

foreach xs (fun x -4,

yield x

)

)

CSE 130, Spring 2014

Final Exam

Page 11 of 12

5. [20 points] Lets write a function to generate all permutations of a list.

(a)

(b)

[5 points] Write a function insertAt with the following behavior:

scala> insertAt (0, "cat", List ("mouse", "giraffe", "hippo"))
resO: List[String] = List (cat, mouse, giraffe, hippo)
scala> insertAt (1, "cat", List ("mouse", "giraffe", "hippo"))
resl: List[String] = List (mouse, cat, giraffe, hippo)
scala> insertAt (2, "cat", List ("mouse", "giraffe", "hippo"))
res2: List[String] = List (mouse, giraffe, cat, hippo)
scala> insertAt (3, "cat", List ("mouse", "giraffe", "hippo"))
res3: List[String] = List (mouse, giraffe, hippo, cat)
Fill in the blanks to get a definition of insertAt
def insertAt[A] (pos:Int, x:A, ys:List[A]): List[A] =
(pos, ys) match {

case (0, _) => X:ys

case (n, y::ys_) => y :: insertAt(n-1, x, ys.)

case (_, Nil) => X 12 Nil

}
[5 points] Next, write a function spliceInto with the following behavior:

scala> spliceInto("cat", List ("mouse", "giraffe", "hippo"))

res4: List[List[String]] = List(List (cat, mouse, giraffe, hippo),
List (mouse, cat, giraffe, hippo),
List (mouse, giraffe, cat, hippo),
List (mouse, giraffe, hippo, cat))

Fill in the blanks to get a definition of spliceInto

def spliceInto[A] (x:A, ys:List[A]) List[List[A]] =

for (i <- (0 to ys.length) .toList)

yield insertAt(i, x, ys)

CSE 130, Spring 2014 Final Exam Page 12 of 12

(c) [10 points] Finally, use spliceInto to write a function permutations with the following behavior:

scala> permutations (List (0,1,2))

res5: List[List[Int]] = List(List (0, 1, 2),
List (1, 0, 2),
List (1, 2, 0),
List (0, 2, 1),
List (2, 0, 1),
List (2, 1, 0))

Fill in the blanks below to obtain an implementation of permutations

def permutations[A] (xs:List[A]): List[List[A]] =
xs match {

case Nil => List(Nil)

case x::xs_ => for (ys j- permutations(xs_)

; ZS j- splicelnto(x,ys))

yield zs

