
Lambda Calculus

Your Favorite Language
Probably has lots of features:

Assignment (x = x + 1)

Booleans, integers, characters, strings, …

Conditionals

Loops

return , break , continue

Functions

Recursion

References / pointers

Objects and classes

Inheritance

…

Which ones can we do without?

What is the smallest universal language?

What is computable?

Before 1930s
Informal notion of an e!ectively calculable function:

can be computed by a human with pen and paper, following an algorithm

1936: Formalization
What is the smallest universal language?

Alan Turing

Alonzo Church

The Next 700 Languages

Peter Landin

Whatever the next 700 languages turn out to be, they will surely be variants of

lambda calculus.

Peter Landin, 1966

The Lambda Calculus
Has one feature:

Functions

No, really

Assignment (x = x + 1)

Booleans, integers, characters, strings, …

Conditionals

Loops

return , break , continue

Functions

Recursion

References / pointers

Objects and classes

Inheritance

Reflection

More precisely, only thing you can do is:

Define a function

Call a function

Describing a Programming Language
Syntax: what do programs look like?

Semantics: what do programs mean?

Operational semantics: how do programs execute step-by-step?

Syntax: What Programs Look Like

e ::= x -- variable 'x'

 | (\x -> e) -- function that takes a parameter 'x' and returns 'e'

 | (e1 e2) -- call (function) 'e1' with argument 'e2'

Programs are expressions e (also called λ-terms) of one of three kinds:

Variable

x , y , z

Abstraction (aka nameless function definition)

(\x -> e)

x is the formal parameter, e is the body

“for any x compute e ”

Application (aka function call)

(e1 e2)

e1 is the function, e2 is the argument

in your favorite language: e1(e2)

(Here each of e , e1 , e2 can itself be a variable, abstraction, or application)

Examples
(\x -> x) -- The identity function (id) that returns its input

(\x -> (\y -> y)) -- A function that returns (id)

(\f -> (f (\x -> x))) -- A function that applies its argument to id

QUIZ
Which of the following terms are syntactically incorrect?

A. (\(\x -> x) -> y)

B. (\x -> (x x))

C. (\x -> (x (y x)))

D. A and C

E. all of the above

Examples
(\x -> x) -- The identity function (id) that returns its input

(\x -> (\y -> y)) -- A function that returns (id)

(\f -> (f (\x -> x))) -- A function that applies its argument to id

How do I define a function with two arguments?

e.g. a function that takes x and y and returns y ?

(\x -> (\y -> y)) -- A function that returns the identity function

 -- OR: a function that takes two arguments

 -- and returns the second one!

How do I apply a function to two arguments?

e.g. apply (\x -> (\y -> y)) to apple and banana ?

(((\x -> (\y -> y)) apple) banana) -- first apply to apple,

 -- then apply the result to banana

Syntactic Sugar

instead of we write

\x -> (\y -> (\z -> e)) \x -> \y -> \z -> e

\x -> \y -> \z -> e \x y z -> e

(((e1 e2) e3) e4) e1 e2 e3 e4

\x y -> y -- A function that that takes two arguments

 -- and returns the second one...

(\x y -> y) apple banana -- ... applied to two arguments

Semantics : What Programs Mean

How do I “run” / “execute” a λ-term?

Think of middle-school algebra:

 (1 + 2) * ((3 * 8) - 2)

 ==

 3 * ((3 * 8) - 2)

 ==

 3 * (24 - 2)

 ==

 3 * 22

 ==

 66

Execute = rewrite step-by-step

Following simple rules

until no more rules apply

Rewrite Rules of Lambda Calculus

1. β-step (aka function call)

2. α-step (aka renaming formals)

But first we have to talk about scope

Semantics: Scope of a Variable
The part of a program where a variable is visible

In the expression (\x -> e)

x is the newly introduced variable

e is the scope of x

any occurrence of x in (\x -> e) is bound (by the binder \x)

For example, x is bound in:

 (\x -> x)

 (\x -> (\y -> x))

An occurrence of x in e is free if it’s not bound by an enclosing abstraction

For example, x is free in:

 (x y) -- no binders at all!

 (\y -> (x y)) -- no \x binder

 ((\x -> (\y -> y)) x) -- x is outside the scope of the \x binder;

 -- intuition: it's not "the same" x

cse130 Calendar Contact Grades Lectures Assignments Links Piazza Canvas

UK Cambrigd

Alonzo
Church

e X y Z x y Z

1 Xx e function a returne

1 e e e ez
fun hang

Lector
bob

To cat

bob cat

bob cat hog

Xx bob Xy cat

function e return a

function e return function y returny

No ie NOT in 7feb
YES
yes

xy notvalidXter

xx Xy y

e

peg

Redox

Axe v

e V

1 72024

wed12200 lambdee.iq 1E 1hYdy
1 e ez

free asy

aetti x
221312 e

v.ae

bindigsite

ly see

FREED

https://ucsd-cse130.github.io/wi25/index.html

QUIZ
Is x bound or free in the expression ((\x -> x) x) ?

A. first occurrence is bound, second is bound

B. first occurrence is bound, second is free

C. first occurrence is free, second is bound

D. first occurrence is free, second is free

EXERCISE: Free Variables
An variable x is free in e if there exists a free occurrence of x in e

We can formally define the set of all free variables in a term like so:

FV(x) = ???

FV(\x -> e) = ???

FV(e1 e2) = ???

Closed Expressions
If e has no free variables it is said to be closed

Closed expressions are also called combinators

What is the shortest closed expression?

Rewrite Rules of Lambda Calculus

1. β-step (aka function call)

2. α-step (aka renaming formals)

Semantics: Redex
A redex is a term of the form

 ((\x -> e1) e2)

A function (\x -> e1)

x is the parameter

e1 is the returned expression

Applied to an argument e2

e2 is the argument

Semantics: β-Reduction

A redex b-steps to another term …

 (\x -> e1) e2 =b> e1[x := e2]

where e1[x := e2] means

“ e1 with all free occurrences of x replaced with e2 ”

Computation by search-and-replace:

If you see an abstraction applied to an argument,

In the body of the abstraction

Replace all free occurrences of the formal by that argument

We say that (\x -> e1) e2 β-steps to e1[x := e2]

Redex Examples

((\x -> x) apple)

=b> apple

Is this right? Ask Elsa

QUIZ

((\x -> (\y -> y)) apple)

=b> ???

A. apple

B. \y -> apple

C. \x -> apple

D. \y -> y

E. \x -> y

QUIZ

(\x -> (((y x) y) x)) apple

=b> ???

A. (((apple apple) apple) apple)

B. (((y apple) y) apple)

C. (((y y) y) y)

D. apple

QUIZ

((\x -> (x (\x -> x))) apple)

=b> ???

A. (apple (\x -> x))

B. (apple (\apple -> apple))

C. (apple (\x -> apple))

D. apple

E. (\x -> x)

EXERCISE
What is a λ-term fill_this_in such that

fill_this_in apple

=b> banana

ELSA: https://goto.ucsd.edu/elsa/index.html

Click here to try this exercise

A Tricky One

((\x -> (\y -> x)) y)

=b> \y -> y

Is this right?

Something is Fishy

(\x -> (\y -> x)) y

=b> (\y -> y)

Is this right?

Problem: The free y in the argument has been captured by \y in body!

Solution: Ensure that formals in the body are di!erent from free-variables of argument!

Capture-Avoiding Substitution
We have to fix our definition of β-reduction:

 (\x -> e1) e2 =b> e1[x := e2]

where e1[x := e2] means “ e1 with all free occurrences of x replaced with e2 ”

e1 with all free occurrences of x replaced with e2

as long as no free variables of e2 get captured

Formally:

x[x := e] = e

y[x := e] = y -- as x /= y

(e1 e2)[x := e] = (e1[x := e]) (e2[x := e])

(\x -> e1)[x := e] = (\x -> e1) -- Q: Why leave `e1` unchanged?

(\y -> e1)[x := e]

 | not (y in FV(e)) = \y -> e1[x := e]

Oops, but what to do if y is in the free-variables of e ?

i.e. if \y -> ... may capture those free variables?

Rewrite Rules of Lambda Calculus

1. β-step (aka function call)

2. α-step (aka renaming formals)

Semantics: α-Renaming

 \x -> e =a> \y -> e[x := y]

 where not (y in FV(e))

We rename a formal parameter x to y

By replace all occurrences of x in the body with y

We say that \x -> e α-steps to \y -> e[x := y]

Example:

(\x -> x) =a> (\y -> y) =a> (\z -> z)

All these expressions are α-equivalent

What’s wrong with these?

-- (A)

(\f -> (f x)) =a> (\x -> (x x))

-- (B)

((\x -> (\y -> y)) y) =a> ((\x -> (\z -> z)) z)

Tricky Example Revisited

 ((\x -> (\y -> x)) y)

 -- rename 'y' to 'z' to avoid capture

 =a> ((\x -> (\z -> x)) y)

 -- now do b-step without capture!

 =b> (\z -> y)

To avoid getting confused,

you can always rename formals,

so di"erent variables have di"erent names!

Normal Forms
Recall redex is a λ-term of the form

((\x -> e1) e2)

A λ-term is in normal form if it contains no redexes.

BOUND

poss
10 5 5

Lest Xx x

21

8
X
h.inEg takes

0s

boyars

17aug
cell x

replacekx withapple
b

1 bana appl

banana

p
banana apple

a banana
b banana
c apple banana

1 Im x y

ym y

y as ly y

free

isfreeinbody

https://goto.ucsd.edu/elsa/index.html
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434473_24432.lc

QUIZ
Which of the following term are not in normal form ?

A. x

B. (x y)

C. ((\x -> x) y)

D. (x (\y -> y))

E. C and D

Semantics: Evaluation
A λ-term e evaluates to e' if

1. There is a sequence of steps

e =?> e_1 =?> ... =?> e_N =?> e'

where each =?> is either =a> or =b> and N >= 0

2. e' is in normal form

Examples of Evaluation
((\x -> x) apple)

 =b> apple

(\f -> f (\x -> x)) (\x -> x)

 =?> ???

(\x -> x x) (\x -> x)

 =?> ???

Elsa shortcuts
Named λ-terms:

let ID = (\x -> x) -- abbreviation for (\x -> x)

To substitute name with its definition, use a =d> step:

(ID apple)

 =d> ((\x -> x) apple) -- expand definition

 =b> apple -- beta-reduce

Evaluation:

e1 =*> e2 : e1 reduces to e2 in 0 or more steps

where each step is =a> , =b> , or =d>

e1 =~> e2 : e1 evaluates to e2 and e2 is in normal form

EXERCISE
Fill in the definitions of FIRST , SECOND and THIRD such that you get the following

behavior in elsa

let FIRST = fill_this_in

let SECOND = fill_this_in

let THIRD = fill_this_in

eval ex1 :

 FIRST apple banana orange

 =*> apple

eval ex2 :

 SECOND apple banana orange

 =*> banana

eval ex3 :

 THIRD apple banana orange

 =*> orange

ELSA: https://goto.ucsd.edu/elsa/index.html

Click here to try this exercise

Non-Terminating Evaluation
((\x -> (x x)) (\x -> (x x)))

 =b> ((\x -> (x x)) (\x -> (x x)))

Some programs loop back to themselves … never reduce to a normal form!

This combinator is called Ω

What if we pass Ω as an argument to another function?

let OMEGA = ((\x -> (x x)) (\x -> (x x)))

((\x -> (\y -> y)) OMEGA)

Does this reduce to a normal form? Try it at home!

Programming in λ-calculus
Real languages have lots of features

Booleans

Records (structs, tuples)

Numbers

Lists

Functions [we got those]

Recursion

Lets see how to encode all of these features with the λ-calculus.

Syntactic Sugar

instead of we write

\x -> (\y -> (\z -> e)) \x -> \y -> \z -> e

\x -> \y -> \z -> e \x y z -> e

(((e1 e2) e3) e4) e1 e2 e3 e4

\x y -> y -- A function that that takes two arguments

 -- and returns the second one...

(\x y -> y) apple banana -- ... applied to two arguments

λ-calculus: Booleans

How can we encode Boolean values (TRUE and FALSE) as functions?

Well, what do we do with a Boolean b ?

Make a binary choice

if b then e1 else e2

Booleans: API
We need to define three functions

let TRUE = ???

let FALSE = ???

let ITE = \b x y -> ??? -- if b then x else y

such that

ITE TRUE apple banana =~> apple

ITE FALSE apple banana =~> banana

(Here, let NAME = e means NAME is an abbreviation for e)

Booleans: Implementation
let TRUE = \x y -> x -- Returns its first argument

let FALSE = \x y -> y -- Returns its second argument

let ITE = \b x y -> b x y -- Applies condition to branches

 -- (redundant, but improves readability)

Example: Branches step-by-step
eval ite_true:

 ITE TRUE e1 e2

 =d> (\b x y -> b x y) TRUE e1 e2 -- expand def ITE

 =b> (\x y -> TRUE x y) e1 e2 -- beta-step

 =b> (\y -> TRUE e1 y) e2 -- beta-step

 =b> TRUE e1 e2 -- expand def TRUE

 =d> (\x y -> x) e1 e2 -- beta-step

 =b> (\y -> e1) e2 -- beta-step

 =b> e1

Example: Branches step-by-step
Now you try it!

Can you fill in the blanks to make it happen?

eval ite_false:

 ITE FALSE e1 e2

 -- fill the steps in!

 =b> e2

EXERCISE: Boolean Operators
ELSA: https://goto.ucsd.edu/elsa/index.html Click here to try this exercise

Now that we have ITE it’s easy to define other Boolean operators:

let NOT = \b -> ???

let OR = \b1 b2 -> ???

let AND = \b1 b2 -> ???

When you are done, you should get the following behavior:

eval ex_not_t:

 NOT TRUE =*> FALSE

eval ex_not_f:

 NOT FALSE =*> TRUE

eval ex_or_ff:

 OR FALSE FALSE =*> FALSE

eval ex_or_ft:

 OR FALSE TRUE =*> TRUE

eval ex_or_ft:

 OR TRUE FALSE =*> TRUE

eval ex_or_tt:

 OR TRUE TRUE =*> TRUE

eval ex_and_ff:

 AND FALSE FALSE =*> FALSE

eval ex_and_ft:

 AND FALSE TRUE =*> FALSE

eval ex_and_ft:

 AND TRUE FALSE =*> FALSE

eval ex_and_tt:

 AND TRUE TRUE =*> TRUE

Programming in λ-calculus
Booleans [done]

Records (structs, tuples)

Numbers

Lists

Functions [we got those]

Recursion

λ-calculus: Records
Let’s start with records with two fields (aka pairs)

What do we do with a pair?

1. Pack two items into a pair, then

2. Get first item, or

3. Get second item.

Pairs : API
We need to define three functions

let PAIR = \x y -> ??? -- Make a pair with elements x and y

 -- { fst : x, snd : y }

let FST = \p -> ??? -- Return first element

 -- p.fst

let SND = \p -> ??? -- Return second element

 -- p.snd

such that

eval ex_fst:

 FST (PAIR apple banana) =*> apple

eval ex_snd:

 SND (PAIR apple banana) =*> banana

Pairs: Implementation
A pair of x and y is just something that lets you pick between x and y !

let PAIR = \x y -> (\b -> ITE b x y)

i.e. PAIR x y is a function that

takes a boolean and returns either x or y

We can now implement FST and SND by “calling” the pair with TRUE or FALSE

let FST = \p -> p TRUE -- call w/ TRUE, get first value

let SND = \p -> p FALSE -- call w/ FALSE, get second value

EXERCISE: Triples
How can we implement a record that contains three values?

ELSA: https://goto.ucsd.edu/elsa/index.html

Click here to try this exercise

I
no

lz z y

off post lecture edit
also NF

skin

119

https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434130_24421.lc
http://goto.ucsd.edu:8095/index.html#?demo=ite.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585435168_24442.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434814_24436.lc

let TRIPLE = \x y z -> ???

let FST3 = \t -> ???

let SND3 = \t -> ???

let THD3 = \t -> ???

eval ex1:

 FST3 (TRIPLE apple banana orange)

 =*> apple

eval ex2:

 SND3 (TRIPLE apple banana orange)

 =*> banana

eval ex3:

 THD3 (TRIPLE apple banana orange)

 =*> orange

Programming in λ-calculus
Booleans [done]

Records (structs, tuples) [done]

Numbers

Lists

Functions [we got those]

Recursion

λ-calculus: Numbers
Let’s start with natural numbers (0, 1, 2, …)

What do we do with natural numbers?

Count: 0 , inc

Arithmetic: dec , + , - , *

Comparisons: == , <= , etc

Natural Numbers: API
We need to define:

A family of numerals: ZERO , ONE , TWO , THREE , …

Arithmetic functions: INC , DEC , ADD , SUB , MULT

Comparisons: IS_ZERO , EQ

Such that they respect all regular laws of arithmetic, e.g.

IS_ZERO ZERO =~> TRUE

IS_ZERO (INC ZERO) =~> FALSE

INC ONE =~> TWO

...

Natural Numbers: Implementation
Church numerals: a number N is encoded as a combinator that calls a function on an

argument N times

let ONE = \f x -> f x

let TWO = \f x -> f (f x)

let THREE = \f x -> f (f (f x))

let FOUR = \f x -> f (f (f (f x)))

let FIVE = \f x -> f (f (f (f (f x))))

let SIX = \f x -> f (f (f (f (f (f x)))))

...

QUIZ: Church Numerals
Which of these is a valid encoding of ZERO ?

A: let ZERO = \f x -> x

B: let ZERO = \f x -> f

C: let ZERO = \f x -> f x

D: let ZERO = \x -> x

E: None of the above

Does this function look familiar?

λ-calculus: Increment
-- Call `f` on `x` one more time than `n` does

let INC = \n -> (\f x -> ???)

Example:

eval inc_zero :

 INC ZERO

 =d> (\n f x -> f (n f x)) ZERO

 =b> \f x -> f (ZERO f x)

 =*> \f x -> f x

 =d> ONE

EXERCISE
Fill in the implementation of ADD so that you get the following behavior

Click here to try this exercise

let ZERO = \f x -> x

let ONE = \f x -> f x

let TWO = \f x -> f (f x)

let INC = \n f x -> f (n f x)

let ADD = fill_this_in

eval add_zero_zero:

 ADD ZERO ZERO =~> ZERO

eval add_zero_one:

 ADD ZERO ONE =~> ONE

eval add_zero_two:

 ADD ZERO TWO =~> TWO

eval add_one_zero:

 ADD ONE ZERO =~> ONE

eval add_one_zero:

 ADD ONE ONE =~> TWO

eval add_two_zero:

 ADD TWO ZERO =~> TWO

QUIZ
How shall we implement ADD ?

A. let ADD = \n m -> n INC m

B. let ADD = \n m -> INC n m

C. let ADD = \n m -> n m INC

D. let ADD = \n m -> n (m INC)

E. let ADD = \n m -> n (INC m)

λ-calculus: Addition

-- Call `f` on `x` exactly `n + m` times

let ADD = \n m -> n INC m

Example:

eval add_one_zero :

 ADD ONE ZERO

 =~> ONE

QUIZ
How shall we implement MULT ?

A. let MULT = \n m -> n ADD m

B. let MULT = \n m -> n (ADD m) ZERO

C. let MULT = \n m -> m (ADD n) ZERO

D. let MULT = \n m -> n (ADD m ZERO)

E. let MULT = \n m -> (n ADD m) ZERO

λ-calculus: Multiplication
-- Call `f` on `x` exactly `n * m` times

let MULT = \n m -> n (ADD m) ZERO

Example:

eval two_times_three :

 MULT TWO ONE

 =~> TWO

Programming in λ-calculus
Booleans [done]

Records (structs, tuples) [done]

Numbers [done]

Lists

Functions [we got those]

Recursion

λ-calculus: Lists
Lets define an API to build lists in the λ-calculus.

An Empty List

NIL

Constructing a list

A list with 4 elements

CONS apple (CONS banana (CONS cantaloupe (CONS dragon NIL)))

intuitively CONS h t creates a new list with

head h

tail t

Destructing a list

HEAD l returns the first element of the list

TAIL l returns the rest of the list

HEAD (CONS apple (CONS banana (CONS cantaloupe (CONS dragon NIL))))

=~> apple

TAIL (CONS apple (CONS banana (CONS cantaloupe (CONS dragon NIL))))

=~> CONS banana (CONS cantaloupe (CONS dragon NIL)))

λ-calculus: Lists
let NIL = ???

let CONS = ???

let HEAD = ???

let TAIL = ???

eval exHd:

 HEAD (CONS apple (CONS banana (CONS cantaloupe (CONS dragon NIL))))

 =~> apple

eval exTl

 TAIL (CONS apple (CONS banana (CONS cantaloupe (CONS dragon NIL))))

 =~> CONS banana (CONS cantaloupe (CONS dragon NIL)))

EXERCISE: Nth
Write an implementation of GetNth such that

GetNth n l returns the n-th element of the list l

Assume that l has n or more elements

let GetNth = ???

eval nth1 :

 GetNth ZERO (CONS apple (CONS banana (CONS cantaloupe NIL)))

 =~> apple

eval nth1 :

 GetNth ONE (CONS apple (CONS banana (CONS cantaloupe NIL)))

 =~> banana

eval nth2 :

 GetNth TWO (CONS apple (CONS banana (CONS cantaloupe NIL)))

 =~> cantaloupe

Click here to try this in elsa

λ-calculus: Recursion

I want to write a function that sums up natural numbers up to n :

let SUM = \n -> ... -- 0 + 1 + 2 + ... + n

such that we get the following behavior

eval exSum0: SUM ZERO =~> ZERO

eval exSum1: SUM ONE =~> ONE

eval exSum2: SUM TWO =~> THREE

eval exSum3: SUM THREE =~> SIX

Can we write sum using Church Numerals?

Click here to try this in Elsa

QUIZ
You can write SUM using numerals but its tedious.

Is this a correct implementation of SUM ?

let SUM = \n -> ITE (ISZ n)

 ZERO

 (ADD n (SUM (DEC n)))

A. Yes

B. No

https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585436042_24449.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1586466816_52273.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1586465192_52175.lc

No!

Named terms in Elsa are just syntactic sugar

To translate an Elsa term to λ-calculus: replace each name with its definition

\n -> ITE (ISZ n)

 ZERO

 (ADD n (SUM (DEC n))) -- But SUM is not yet defined!

Recursion:

Inside this function

Want to call the same function on DEC n

Looks like we can’t do recursion!

Requires being able to refer to functions by name,

But λ-calculus functions are anonymous.

Right?

λ-calculus: Recursion
Think again!

Recursion:

Instead of

Inside this function I want to call the same function on DEC n

Lets try

Inside this function I want to call some function rec on DEC n

And BTW, I want rec to be the same function

Step 1: Pass in the function to call “recursively”

let STEP =

 \rec -> \n -> ITE (ISZ n)

 ZERO

 (ADD n (rec (DEC n))) -- Call some rec

Step 2: Do some magic to STEP , so rec is itself

\n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))

That is, obtain a term MAGIC such that

MAGIC =*> STEP MAGIC

λ-calculus: Fixpoint Combinator
Wanted: a λ-term FIX such that

FIX STEP calls STEP with FIX STEP as the first argument:

(FIX STEP) =*> STEP (FIX STEP)

(In math: a fixpoint of a function f(x) is a point x, such that f(x) = x)

Once we have it, we can define:

let SUM = FIX STEP

Then by property of FIX we have:

SUM =*> FIX STEP =*> STEP (FIX STEP) =*> STEP SUM

and so now we compute:

eval sum_two:

 SUM TWO

 =*> STEP SUM TWO

 =*> ITE (ISZ TWO) ZERO (ADD TWO (SUM (DEC TWO)))

 =*> ADD TWO (SUM (DEC TWO))

 =*> ADD TWO (SUM ONE)

 =*> ADD TWO (STEP SUM ONE)

 =*> ADD TWO (ITE (ISZ ONE) ZERO (ADD ONE (SUM (DEC ONE))))

 =*> ADD TWO (ADD ONE (SUM (DEC ONE)))

 =*> ADD TWO (ADD ONE (SUM ZERO))

 =*> ADD TWO (ADD ONE (ITE (ISZ ZERO) ZERO (ADD ZERO (SUM DEC ZERO)))

 =*> ADD TWO (ADD ONE (ZERO))

 =*> THREE

How should we define FIX ???

The Y combinator
Remember Ω?

(\x -> x x) (\x -> x x)

=b> (\x -> x x) (\x -> x x)

This is self-replcating code! We need something like this but a bit more involved…

The Y combinator discovered by Haskell Curry:

let FIX = \stp -> (\x -> stp (x x)) (\x -> stp (x x))

How does it work?

eval fix_step:

 FIX STEP

 =d> (\stp -> (\x -> stp (x x)) (\x -> stp (x x))) STEP

 =b> (\x -> STEP (x x)) (\x -> STEP (x x))

 =b> STEP ((\x -> STEP (x x)) (\x -> STEP (x x)))

 -- ^^^^^^^^^^ this is FIX STEP ^^^^^^^^^^^

That’s all folks, Haskell Curry was very clever.

Next week: We’ll look at the language named after him (Haskell)

Generated by Hakyll, template by Armin Ronacher, suggest improvements here.

http://jaspervdj.be/hakyll
http://lucumr.pocoo.org/
https://github.com/ucsd-progsys/liquidhaskell-blog/

